RichardErkhov
commited on
Commit
•
bc17dbb
1
Parent(s):
1790c44
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
cpt_st-vicuna-v1.3-1.5b-ppl - GGUF
|
11 |
+
- Model creator: https://huggingface.co/nota-ai/
|
12 |
+
- Original model: https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q2_K.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q2_K.gguf) | Q2_K | 0.56GB |
|
18 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_XS.gguf) | IQ3_XS | 0.61GB |
|
19 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_S.gguf) | IQ3_S | 0.64GB |
|
20 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_S.gguf) | Q3_K_S | 0.64GB |
|
21 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.IQ3_M.gguf) | IQ3_M | 0.66GB |
|
22 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K.gguf) | Q3_K | 0.7GB |
|
23 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_M.gguf) | Q3_K_M | 0.7GB |
|
24 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q3_K_L.gguf) | Q3_K_L | 0.75GB |
|
25 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.IQ4_XS.gguf) | IQ4_XS | 0.77GB |
|
26 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q4_0.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q4_0.gguf) | Q4_0 | 0.81GB |
|
27 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.IQ4_NL.gguf) | IQ4_NL | 0.81GB |
|
28 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K_S.gguf) | Q4_K_S | 0.81GB |
|
29 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K.gguf) | Q4_K | 0.84GB |
|
30 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q4_K_M.gguf) | Q4_K_M | 0.84GB |
|
31 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q4_1.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q4_1.gguf) | Q4_1 | 0.88GB |
|
32 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q5_0.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q5_0.gguf) | Q5_0 | 0.96GB |
|
33 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K_S.gguf) | Q5_K_S | 0.96GB |
|
34 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K.gguf) | Q5_K | 0.98GB |
|
35 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q5_K_M.gguf) | Q5_K_M | 0.98GB |
|
36 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q5_1.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q5_1.gguf) | Q5_1 | 1.04GB |
|
37 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q6_K.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q6_K.gguf) | Q6_K | 1.13GB |
|
38 |
+
| [cpt_st-vicuna-v1.3-1.5b-ppl.Q8_0.gguf](https://huggingface.co/RichardErkhov/nota-ai_-_cpt_st-vicuna-v1.3-1.5b-ppl-gguf/blob/main/cpt_st-vicuna-v1.3-1.5b-ppl.Q8_0.gguf) | Q8_0 | 1.46GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
# Shortened LLM Model Card
|
45 |
+
|
46 |
+
Shortened LLM is a depth-pruned version of large language models for efficient text generation.
|
47 |
+
|
48 |
+
- **Developed by:** [Nota AI](https://www.nota.ai/)
|
49 |
+
- **License:** Non-commercial license
|
50 |
+
- **Repository:** https://github.com/Nota-NetsPresso/shortened-llm
|
51 |
+
- **Paper:** https://arxiv.org/abs/2402.02834
|
52 |
+
|
53 |
+
## Compression Method
|
54 |
+
* After identifying unimportant Transformer blocks, we perform **one-shot pruning**.
|
55 |
+
* In retraining pruned models for quality recovery, **continued pretraining (CPT)** on a large corpus markedly outperforms LoRA-based tuning, particularly at severe pruning ratios.
|
56 |
+
|
57 |
+
## Models from Aggressive Pruning & CPT Retraining (arXiv-v2):
|
58 |
+
| Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
|
59 |
+
|:---:|:---:|:---:|:---:|
|
60 |
+
| Vicuna-v1.3-7B | 20% | PPL | [nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl) |
|
61 |
+
| Vicuna-v1.3-7B | 45% | PPL | [nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl) |
|
62 |
+
| Vicuna-v1.3-7B | 60% | PPL | [nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl) |
|
63 |
+
| Vicuna-v1.3-7B | 80% | PPL | [nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl) |
|
64 |
+
|
65 |
+
<details>
|
66 |
+
<summary>
|
67 |
+
Click to see the results:
|
68 |
+
</summary>
|
69 |
+
|
70 |
+
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
|
71 |
+
|
72 |
+
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_results.png" width="100%">
|
73 |
+
|
74 |
+
</details>
|
75 |
+
|
76 |
+
#### Experimental Setup for CPT of Pruned Vicuna-7B
|
77 |
+
* Dataset: [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B)
|
78 |
+
* Training using 8 NVIDIA H100 GPUs.
|
79 |
+
* 5.5B parameters: 37B training tokens (for 6 days)
|
80 |
+
* 3.7B parameters: 74B tokens (for 8 days)
|
81 |
+
* 2.7B parameters: 150B tokens (for 12 days)
|
82 |
+
* 1.5B parameters: 271B tokens (for 11 days)
|
83 |
+
* AdamW optimizer with (β1, β2)=(0.9, 0.95); a learning rate of 0.0001; a weight decay of 0.1.
|
84 |
+
* Global batch size: 512 (micro-batch size of 2 × 32 gradient accumulation steps × 8 GPUs).
|
85 |
+
|
86 |
+
<details>
|
87 |
+
<summary>
|
88 |
+
Click to see the learning curve:
|
89 |
+
</summary>
|
90 |
+
|
91 |
+
**Zero-shot performance over the course of training for models from Vicuna-7B-v1.3 at different pruning ratios.** For each model size, the CPT duration was limited to a two-week period, but additional training could further improve the quality.
|
92 |
+
|
93 |
+
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st_llm-cpt_learning-curve.png" width="100%">
|
94 |
+
|
95 |
+
</details>
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
## Models from Moderate Pruning & LoRA Retraining (arXiv-v1):
|
100 |
+
| Source<br>Model | Pruning<br>Ratio | Pruning<br>Criterion | HF Models<br>Link |
|
101 |
+
|:---:|:---:|:---:|:---:|
|
102 |
+
| LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) |
|
103 |
+
| LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) |
|
104 |
+
| Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) |
|
105 |
+
| Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) |
|
106 |
+
| Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) |
|
107 |
+
| Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
|
108 |
+
|
109 |
+
<details>
|
110 |
+
|
111 |
+
<summary>
|
112 |
+
Click to see the results:
|
113 |
+
</summary>
|
114 |
+
|
115 |
+
- EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c)
|
116 |
+
|
117 |
+
<img alt="results" img src="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/compressed-llm/st-llama_zero-shot_scores.png" width="100%">
|
118 |
+
|
119 |
+
</details>
|
120 |
+
|
121 |
+
## License
|
122 |
+
- All rights related to this repository and the compressed models are reserved by Nota Inc.
|
123 |
+
- The intended use is strictly limited to research and non-commercial projects.
|
124 |
+
|
125 |
+
## Acknowledgments
|
126 |
+
- [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) and [Gwangju AICA](http://www.aica-gj.kr/main.php) for generously providing GPU resources.
|
127 |
+
- [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs!
|
128 |
+
- Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs!
|
129 |
+
|
130 |
+
## Citation
|
131 |
+
```bibtex
|
132 |
+
@article{kim2024shortened,
|
133 |
+
title={Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods},
|
134 |
+
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
|
135 |
+
journal={arXiv preprint arXiv:2402.02834},
|
136 |
+
year={2024},
|
137 |
+
url={https://arxiv.org/abs/2402.02834}
|
138 |
+
}
|
139 |
+
```
|
140 |
+
```bibtex
|
141 |
+
@article{kim2024mefomo,
|
142 |
+
title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models},
|
143 |
+
author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu},
|
144 |
+
journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)},
|
145 |
+
year={2024},
|
146 |
+
url={https://openreview.net/forum?id=18VGxuOdpu}
|
147 |
+
}
|
148 |
+
```
|
149 |
+
|