RichardErkhov commited on
Commit
2656b90
·
verified ·
1 Parent(s): b2bdd9c

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ starcoder2-3b-instruct - bnb 4bits
11
+ - Model creator: https://huggingface.co/TechxGenus/
12
+ - Original model: https://huggingface.co/TechxGenus/starcoder2-3b-instruct/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ tags:
20
+ - code
21
+ - starcoder2
22
+ library_name: transformers
23
+ pipeline_tag: text-generation
24
+ license: bigcode-openrail-m
25
+ ---
26
+
27
+ <p align="center">
28
+ <img width="300px" alt="starcoder2-instruct" src="https://huggingface.co/TechxGenus/starcoder2-3b-instruct/resolve/main/starcoder2-instruct.jpg">
29
+ </p>
30
+
31
+ ### starcoder2-instruct
32
+
33
+ We've fine-tuned starcoder2-3b with an additional 0.7 billion high-quality, code-related tokens for 3 epochs. We used DeepSpeed ZeRO 3 and Flash Attention 2 to accelerate the training process. It achieves **65.9 pass@1** on HumanEval-Python. This model operates using the Alpaca instruction format (excluding the system prompt).
34
+
35
+ ### Usage
36
+
37
+ Here give some examples of how to use our model:
38
+
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
+ import torch
42
+ PROMPT = """### Instruction
43
+ {instruction}
44
+ ### Response
45
+ """
46
+ instruction = <Your code instruction here>
47
+ prompt = PROMPT.format(instruction=instruction)
48
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/starcoder2-3b-instruct")
49
+ model = AutoModelForCausalLM.from_pretrained(
50
+ "TechxGenus/starcoder2-3b-instruct",
51
+ torch_dtype=torch.bfloat16,
52
+ device_map="auto",
53
+ )
54
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
55
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=2048)
56
+ print(tokenizer.decode(outputs[0]))
57
+ ```
58
+
59
+ With text-generation pipeline:
60
+
61
+
62
+ ```python
63
+ from transformers import pipeline
64
+ import torch
65
+ PROMPT = """### Instruction
66
+ {instruction}
67
+ ### Response
68
+ """
69
+ instruction = <Your code instruction here>
70
+ prompt = PROMPT.format(instruction=instruction)
71
+ generator = pipeline(
72
+ model="TechxGenus/starcoder2-3b-instruct",
73
+ task="text-generation",
74
+ torch_dtype=torch.bfloat16,
75
+ device_map="auto",
76
+ )
77
+ result = generator(prompt, max_length=2048)
78
+ print(result[0]["generated_text"])
79
+ ```
80
+
81
+ ### Note
82
+
83
+ Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. It has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
84
+
85
+