Create optimizers.py
Browse files- optimizers.py +86 -0
optimizers.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#coding:utf-8
|
| 2 |
+
import os, sys
|
| 3 |
+
import os.path as osp
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.optim import Optimizer
|
| 8 |
+
from functools import reduce
|
| 9 |
+
from torch.optim import AdamW
|
| 10 |
+
|
| 11 |
+
class MultiOptimizer:
|
| 12 |
+
def __init__(self, optimizers={}, schedulers={}):
|
| 13 |
+
self.optimizers = optimizers
|
| 14 |
+
self.schedulers = schedulers
|
| 15 |
+
self.keys = list(optimizers.keys())
|
| 16 |
+
self.param_groups = reduce(lambda x,y: x+y, [v.param_groups for v in self.optimizers.values()])
|
| 17 |
+
|
| 18 |
+
def state_dict(self):
|
| 19 |
+
state_dicts = [(key, self.optimizers[key].state_dict())\
|
| 20 |
+
for key in self.keys]
|
| 21 |
+
return state_dicts
|
| 22 |
+
|
| 23 |
+
def load_state_dict(self, state_dict):
|
| 24 |
+
for key, val in state_dict:
|
| 25 |
+
try:
|
| 26 |
+
self.optimizers[key].load_state_dict(val)
|
| 27 |
+
except:
|
| 28 |
+
print("Unloaded %s" % key)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def step(self, key=None):
|
| 32 |
+
if key is not None:
|
| 33 |
+
self.optimizers[key].step()
|
| 34 |
+
else:
|
| 35 |
+
_ = [self.optimizers[key].step() for key in self.keys]
|
| 36 |
+
|
| 37 |
+
def zero_grad(self, key=None):
|
| 38 |
+
if key is not None:
|
| 39 |
+
self.optimizers[key].zero_grad()
|
| 40 |
+
else:
|
| 41 |
+
_ = [self.optimizers[key].zero_grad() for key in self.keys]
|
| 42 |
+
|
| 43 |
+
def scheduler(self, *args, key=None):
|
| 44 |
+
if key is not None:
|
| 45 |
+
self.schedulers[key].step(*args)
|
| 46 |
+
else:
|
| 47 |
+
_ = [self.schedulers[key].step(*args) for key in self.keys]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def build_optimizer(parameters):
|
| 51 |
+
optimizer, scheduler = _define_optimizer(parameters)
|
| 52 |
+
return optimizer, scheduler
|
| 53 |
+
|
| 54 |
+
def _define_optimizer(params):
|
| 55 |
+
optimizer_params = params['optimizer_params']
|
| 56 |
+
sch_params = params['scheduler_params']
|
| 57 |
+
optimizer = AdamW(
|
| 58 |
+
params['params'],
|
| 59 |
+
lr=optimizer_params.get('lr', 1e-4),
|
| 60 |
+
weight_decay=optimizer_params.get('weight_decay', 5e-4),
|
| 61 |
+
betas=(0.9, 0.98),
|
| 62 |
+
eps=1e-9)
|
| 63 |
+
scheduler = _define_scheduler(optimizer, sch_params)
|
| 64 |
+
return optimizer, scheduler
|
| 65 |
+
|
| 66 |
+
def _define_scheduler(optimizer, params):
|
| 67 |
+
print(params)
|
| 68 |
+
scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
| 69 |
+
optimizer,
|
| 70 |
+
max_lr=params.get('max_lr', 5e-4),
|
| 71 |
+
epochs=params.get('epochs', 200),
|
| 72 |
+
steps_per_epoch=params.get('steps_per_epoch', 1000),
|
| 73 |
+
pct_start=params.get('pct_start', 0.0),
|
| 74 |
+
final_div_factor=5)
|
| 75 |
+
|
| 76 |
+
return scheduler
|
| 77 |
+
|
| 78 |
+
def build_multi_optimizer(parameters_dict, scheduler_params):
|
| 79 |
+
optim = dict([(key, AdamW(params, lr=1e-4, weight_decay=1e-6, betas=(0.9, 0.98), eps=1e-9))
|
| 80 |
+
for key, params in parameters_dict.items()])
|
| 81 |
+
|
| 82 |
+
schedulers = dict([(key, _define_scheduler(opt, scheduler_params)) \
|
| 83 |
+
for key, opt in optim.items()])
|
| 84 |
+
|
| 85 |
+
multi_optim = MultiOptimizer(optim, schedulers)
|
| 86 |
+
return multi_optim
|