File size: 10,839 Bytes
1d8c748 acad08b 1d8c748 77dd69f 6c0fa63 77dd69f 3990645 77dd69f 1d8c748 77dd69f 1d8c748 77dd69f 1d8c748 77dd69f acad08b 77dd69f acad08b 77dd69f 1d8c748 77dd69f 5a16848 77dd69f 1d8c748 77dd69f 1d8c748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
license: apache-2.0
datasets:
- glaiveai/glaive-function-calling-v2
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-32B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- tools
- functions
---
# Qwen2.5-Coder-32B-Glaive-ToolCall

## Model Description
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct) specifically enhanced for tool calling capabilities. The model has been trained using the [Glaive Function Calling v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) dataset (`glaiveai/glaive-function-calling-v2`) to significantly improve its ability to understand, generate, and execute function calls in various programming and automation contexts.
## Model Details
- **Base Model**: Qwen/Qwen2.5-Coder-32B-Instruct
- **Model Type**: Large Language Model (LLM) with enhanced tool calling capabilities
- **Architecture**: Transformer-based decoder model
- **Parameters**: 32 billion parameters
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Dataset**: glaive-function-calling-v2
- **Language Support**: Multilingual
## Training Configuration
- **Fine-tuning Type**: LoRA with rank 8, alpha 16
- **Training Epochs**: 3.0
- **Learning Rate**: 5e-5 with cosine scheduler
- **Batch Size**: 2 per device with 8 gradient accumulation steps
- **Context Length**: 2048 tokens
- **Optimizer**: AdamW
- **Precision**: BF16
- **Max Samples**: 100,000
## Enhanced Capabilities
### Tool Calling Improvements
This model demonstrates significant improvements in:
1. **Function Schema Understanding**: Enhanced ability to parse and understand complex function signatures and parameter requirements
2. **Context-Aware Tool Selection**: Improved decision-making for selecting appropriate tools based on user queries
3. **Parameter Extraction**: Better extraction and formatting of function parameters from natural language inputs
4. **Multi-step Tool Orchestration**: Enhanced capability to chain multiple tool calls for complex tasks
5. **Error Handling**: Improved error detection and recovery in tool calling scenarios
### Key Features
- **Robust JSON Generation**: Produces well-formatted JSON for function calls with proper schema adherence
- **Natural Language Integration**: Seamlessly integrates tool calls within conversational responses
- **Code Generation with Tools**: Enhanced ability to generate code that incorporates external tool usage
- **API Integration**: Improved understanding of REST APIs, GraphQL, and other web service interfaces
## Use Cases
This model is particularly well-suited for:
- **AI Assistants**: Building conversational AI that can interact with external systems
- **Automation Workflows**: Creating intelligent automation scripts with dynamic tool usage
- **Code Generation**: Generating code that integrates with APIs and external services
- **Data Processing**: Automating data analysis and processing tasks with appropriate tools
- **System Integration**: Building bridges between different software systems and services
## Usage Example
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the model and tokenizer
model_name = "RekklesAI/Qwen2.5-Coder-32B-Glaive-ToolCall"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Example prompt for tool calling
prompt = """You have access to a weather API. Help me get the current weather for New York City.
Available tools:
- get_weather(location: str, units: str = "metric") -> dict
User: What's the weather like in New York City?"""
# Generate response
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)
```
## Performance Metrics
The model shows significant improvements in tool calling benchmarks:
- **Function Call Accuracy**: Enhanced precision in generating syntactically correct function calls
- **Parameter Extraction**: Improved accuracy in extracting relevant parameters from user queries
- **Tool Selection**: Better performance in selecting appropriate tools for given tasks
- **JSON Formatting**: Reduced errors in JSON structure and formatting
### Training Loss
The following chart shows the training loss progression during the fine-tuning process:

*Training loss curve demonstrating stable convergence over 3 epochs with the Glaive Function Calling v2 dataset.*
## Limitations
- The model's tool calling capabilities are primarily trained on the patterns present in the Glaive Function Calling v2 dataset
- Performance may vary for highly specialized or domain-specific tools not represented in the training data
- Like all LLMs, the model may occasionally generate plausible-sounding but incorrect tool calls
- The model requires careful prompt engineering for optimal tool calling performance
## Ethical Considerations
- **Tool Safety**: Users should implement proper validation and sandboxing when allowing the model to execute actual tool calls
- **Access Control**: Implement appropriate access controls and permissions for tools accessible to the model
- **Data Privacy**: Be mindful of sensitive data that might be passed through tool calls
- **Monitoring**: Implement logging and monitoring for tool usage in production environments
## Training Data
The model was fine-tuned using the **Glaive Function Calling v2** dataset (`glaiveai/glaive-function-calling-v2`), a comprehensive and high-quality dataset specifically designed for training language models in function calling capabilities.
### Dataset Overview
- **Dataset Size**: 113,000 training examples
- **Format**: JSON with structured conversations
- **Language**: English
- **License**: Apache 2.0
- **Source**: [Glaive AI](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
### Dataset Characteristics
The Glaive Function Calling v2 dataset is meticulously curated to provide diverse and realistic function calling scenarios:
#### **Conversation Structure**
- **System Messages**: Define the assistant's role and available functions with detailed schemas
- **Multi-turn Dialogues**: Natural conversations between users and AI assistants
- **Function Calls**: Properly formatted JSON function invocations
- **Function Responses**: Realistic API responses and result handling
- **Error Scenarios**: Examples of graceful error handling and capability limitations
#### **Function Diversity**
The dataset covers a wide range of function types and use cases:
- **Utility Functions**: Email sending, calendar management, password generation
- **Data Retrieval**: News headlines, stock prices, weather information
- **Computational Tasks**: Mathematical calculations, unit conversions, data analysis
- **Search Operations**: Movie searches, book lookups, general information retrieval
- **Communication Tools**: Contact management, messaging systems
- **Financial Services**: Exchange rates, loan calculations, investment data
- **Content Creation**: Text generation, formatting, summarization
#### **Quality Features**
1. **Realistic Scenarios**: Conversations mirror real-world user interactions with AI assistants
2. **Proper Error Handling**: Examples of polite refusals when functions are unavailable
3. **Parameter Validation**: Correct handling of required and optional function parameters
4. **Context Awareness**: Functions are called appropriately based on conversation context
5. **Natural Language Integration**: Seamless integration of function results into conversational responses
#### **Training Examples Include**:
- **Single Function Calls**: Simple, direct function invocations
- **Multi-step Workflows**: Complex scenarios requiring multiple function calls
- **Parameter Extraction**: Converting natural language requests into structured function parameters
- **Response Formatting**: Presenting function results in user-friendly formats
- **Capability Boundaries**: Clear communication of system limitations
### Dataset Impact on Model Performance
This carefully curated dataset enables the model to:
- **Understand Function Schemas**: Parse and comprehend complex function definitions
- **Extract Parameters**: Accurately identify and format required function arguments from user queries
- **Generate Valid JSON**: Produce syntactically correct function calls
- **Handle Edge Cases**: Manage scenarios where requested functions are unavailable
- **Maintain Conversational Flow**: Integrate function calling seamlessly into natural dialogue
- **Provide Helpful Responses**: Transform function results into meaningful user communications
### Technical Implementation
The dataset follows industry-standard formats for function calling:
- OpenAI-compatible function schemas
- Structured JSON for function definitions and calls
- Clear separation between system instructions, user queries, and function responses
- Consistent formatting across all examples
This comprehensive training data ensures the model can handle real-world function calling scenarios with high accuracy and reliability, making it suitable for production deployment in AI assistant applications, automation workflows, and API integration tasks.
## Technical Specifications
- **Framework**: Built using LLaMA-Factory
- **Hardware Requirements**: Recommended 80GB+ VRAM for inference
- **Quantization**: Compatible with various quantization methods (GPTQ, AWQ, etc.)
- **Deployment**: Suitable for both cloud and on-premise deployment
## Citation
If you use this model in your research or applications, please cite:
```bibtex
@misc{qwen25-coder-glaive-toolcall,
title={Qwen2.5-Coder-32B-Glaive-ToolCall},
author={[RekklesAI]},
year={2025},
note={Fine-tuned version of Qwen2.5-Coder-32B-Instruct with enhanced tool calling capabilities using Glaive dataset}
}
```
## License
apache-2.0
## Acknowledgments
- **Qwen Team**: For the excellent base model Qwen2.5-Coder-32B-Instruct
- **Glaive**: For providing the high-quality tool calling dataset
- **LLaMA-Factory**: For the efficient fine-tuning framework
---
*This model card follows the guidelines for responsible AI model documentation and transparency.* |