Commit
·
bf1f7df
1
Parent(s):
4e04106
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPushDense-v2.zip +3 -0
- a2c-PandaPushDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaPushDense-v2/data +94 -0
- a2c-PandaPushDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaPushDense-v2/policy.pth +3 -0
- a2c-PandaPushDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaPushDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPushDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPushDense-v2
|
16 |
+
type: PandaPushDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -8.84 +/- 4.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPushDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPushDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPushDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d13dfba3808a78a91b9e504243e4d4a16a541b6fe96359d21d7bb867f0b7a97
|
3 |
+
size 123674
|
a2c-PandaPushDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaPushDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f302280aaf0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f30228058a0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674378753591633216,
|
50 |
+
"learning_rate": 0.001,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8O04vwklvL92eCA9DLyxv6g9oj92eCA9r9uDP4eBaL92eCA9IjmovoxlnD92eCA9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEq+ZP7OshT9nV6syjtPZv3ceHz5nV6syM+3/PaYTWL9nV6syyNCqPWgRWj9nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD3w7Ti/CSW8v3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD0MvLG/qD2iP3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD2v24M/h4Fov3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD0iOai+jGWcP3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbuUaA5LBEsShpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-0.72238064 -1.4698802 0.03917738]\n [-1.3885512 1.2675066 0.03917738]\n [ 1.0301417 -0.90822643 0.03917738]\n [-0.3285609 1.221849 0.03917738]]",
|
60 |
+
"desired_goal": "[[ 1.2006552e+00 1.0443329e+00 1.9946766e-08]\n [-1.7017686e+00 1.5538965e-01 1.9946766e-08]\n [ 1.2496414e-01 -8.4404981e-01 1.9946766e-08]\n [ 8.3406031e-02 8.5182810e-01 1.9946766e-08]]",
|
61 |
+
"observation": "[[-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -0.72238064 -1.4698802 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -1.3885512 1.2675066 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n 1.0301417 -0.90822643 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -0.3285609 1.221849 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHdz1vCT5GL0K16M87QP9vbbPPT0K16M8gEiJPZwBgr0K16M8Xy3kPTnLCz4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2wKkPVOpuT0K16M8yixevZ0rK70K16M8N42OvdrRib0K16M8zNABPvrD+DwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAd3PW8JPkYvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADtA/29ts89PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACASIk9nAGCvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABfLeQ9OcsLPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[-0.03001218 -0.03734697 0.02 ]\n [-0.12354264 0.04634067 0.02 ]\n [ 0.06703281 -0.06347963 0.02 ]\n [ 0.11141466 0.13651742 0.02 ]]",
|
71 |
+
"desired_goal": "[[ 0.08008357 0.09065499 0.02 ]\n [-0.05424193 -0.04178964 0.02 ]\n [-0.06960528 -0.06729479 0.02 ]\n [ 0.12677306 0.03036689 0.02 ]]",
|
72 |
+
"observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 -3.00121848e-02 -3.73469740e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 -1.23542644e-01 4.63406667e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 6.70328140e-02 -6.34796321e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 1.11414663e-01 1.36517420e-01\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": true,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFRvzOuIgKcCUhpRSlIwBbJRLMowBdJRHQKlO6jZ+QU51fZQoaAZoCWgPQwiFC3kEN+olwJSGlFKUaBVLMmgWR0CpToZ75VOsdX2UKGgGaAloD0MIWWq932ifLMCUhpRSlGgVSzJoFkdAqU4BC8e0X3V9lChoBmgJaA9DCLx1/u2yHyHAlIaUUpRoFUsyaBZHQKlNflWfbsZ1fZQoaAZoCWgPQwgwEtpyLoUGwJSGlFKUaBVLMmgWR0CpUCMCDEm6dX2UKGgGaAloD0MItybdlsjF97+UhpRSlGgVSzJoFkdAqU+9vMr3CnV9lChoBmgJaA9DCDI9YYkHNBDAlIaUUpRoFUsyaBZHQKlPN7MPjGV1fZQoaAZoCWgPQwigUE8fgUciwJSGlFKUaBVLMmgWR0CpTrSOzY29dX2UKGgGaAloD0MI1EhL5e14IsCUhpRSlGgVSzJoFkdAqVFsijcmB3V9lChoBmgJaA9DCLYQ5KCEOQzAlIaUUpRoFUsyaBZHQKlRB029+PR1fZQoaAZoCWgPQwjwarkzEywpwJSGlFKUaBVLMmgWR0CpUIJda+vhdX2UKGgGaAloD0MIRIgrZ+98KsCUhpRSlGgVSzJoFkdAqU//hCMP0HV9lChoBmgJaA9DCLtgcM0dPfi/lIaUUpRoFUsyaBZHQKlSmlE7W/d1fZQoaAZoCWgPQwhVwD3Pn1YWwJSGlFKUaBVLMmgWR0CpUjU+9rXUdX2UKGgGaAloD0MI5KHvbmXBJsCUhpRSlGgVSzJoFkdAqVGvNmlImXV9lChoBmgJaA9DCBqnIarwtx3AlIaUUpRoFUsyaBZHQKlRLDbah6B1fZQoaAZoCWgPQwg91/fhIMEAwJSGlFKUaBVLMmgWR0CpU/oXj2i+dX2UKGgGaAloD0MIHY6u0t2VKcCUhpRSlGgVSzJoFkdAqVOVs7+1jXV9lChoBmgJaA9DCPuSjQdbbAvAlIaUUpRoFUsyaBZHQKlTEI1LrX11fZQoaAZoCWgPQwjLgok/inomwJSGlFKUaBVLMmgWR0CpUo2xIJ7cdX2UKGgGaAloD0MIn5RJDW3QGcCUhpRSlGgVSzJoFkdAqVVOrS3LFHV9lChoBmgJaA9DCG3/ykqTsivAlIaUUpRoFUsyaBZHQKlU6n889wF1fZQoaAZoCWgPQwh0YaQXtTsFwJSGlFKUaBVLMmgWR0CpVGSRB/qgdX2UKGgGaAloD0MIa7bykv95GcCUhpRSlGgVSzJoFkdAqVPhgqmTDHV9lChoBmgJaA9DCC1gArfudiDAlIaUUpRoFUsyaBZHQKlWfJVbRnh1fZQoaAZoCWgPQwikNQadECIrwJSGlFKUaBVLMmgWR0CpVhdy1eBydX2UKGgGaAloD0MI5SX/k7+rE8CUhpRSlGgVSzJoFkdAqVWRiobXH3V9lChoBmgJaA9DCJrrNNJSQSbAlIaUUpRoFUsyaBZHQKlVDpvgm7d1fZQoaAZoCWgPQwhRo5BkVt8XwJSGlFKUaBVLMmgWR0CpV8KzZ6D5dX2UKGgGaAloD0MIA9GTMqlhEsCUhpRSlGgVSzJoFkdAqVdeXVsk6nV9lChoBmgJaA9DCHjxftx+KSnAlIaUUpRoFUsyaBZHQKlW2DVYp2F1fZQoaAZoCWgPQwj5hy09mhoawJSGlFKUaBVLMmgWR0CpVlUuDjBEdX2UKGgGaAloD0MI46YGms9ZGcCUhpRSlGgVSzJoFkdAqVj1jNIK+nV9lChoBmgJaA9DCC/9S1KZMhfAlIaUUpRoFUsyaBZHQKlYkEfT1Ch1fZQoaAZoCWgPQwjD19e61JAqwJSGlFKUaBVLMmgWR0CpWArhR64UdX2UKGgGaAloD0MISMMpc/MFJ8CUhpRSlGgVSzJoFkdAqVeIkona4HV9lChoBmgJaA9DCP4Mb9bgzRHAlIaUUpRoFUsyaBZHQKlaP4etCAt1fZQoaAZoCWgPQwi3Jt2WyF0jwJSGlFKUaBVLMmgWR0CpWdpZwGW2dX2UKGgGaAloD0MIZmoSvCFdJMCUhpRSlGgVSzJoFkdAqVlUVzp5eXV9lChoBmgJaA9DCEVj7e9szxrAlIaUUpRoFUsyaBZHQKlY0XgtOEd1fZQoaAZoCWgPQwi0lCwnoewqwJSGlFKUaBVLMmgWR0CpW4Dvuw5edX2UKGgGaAloD0MI3iHFAIkGHMCUhpRSlGgVSzJoFkdAqVscFB6a9nV9lChoBmgJaA9DCHTwTGiSGBzAlIaUUpRoFUsyaBZHQKlalk6Lfk51fZQoaAZoCWgPQwg0+PvFbEEmwJSGlFKUaBVLMmgWR0CpWhNgKF7EdX2UKGgGaAloD0MIH/ZCAduhJMCUhpRSlGgVSzJoFkdAqVy0XYUWVXV9lChoBmgJaA9DCCf20D5WsCXAlIaUUpRoFUsyaBZHQKlcT7Hhjvx1fZQoaAZoCWgPQwgibk4lA6AnwJSGlFKUaBVLMmgWR0CpW8m1pj+adX2UKGgGaAloD0MItB6+TBSRI8CUhpRSlGgVSzJoFkdAqVtG9US7G3V9lChoBmgJaA9DCFEWvr7WPSLAlIaUUpRoFUsyaBZHQKld+La24NJ1fZQoaAZoCWgPQwgVcxB0tBowwJSGlFKUaBVLMmgWR0CpXZP8AJb/dX2UKGgGaAloD0MICjGXVG2HHsCUhpRSlGgVSzJoFkdAqV0N7pmmL3V9lChoBmgJaA9DCDG1pQ7y4iHAlIaUUpRoFUsyaBZHQKlcishgVoJ1fZQoaAZoCWgPQwiFCg4viMjsv5SGlFKUaBVLMmgWR0CpX02krPMTdX2UKGgGaAloD0MIllzF4jfVEsCUhpRSlGgVSzJoFkdAqV7pVU+9rXV9lChoBmgJaA9DCJsdqb7zSwPAlIaUUpRoFUsyaBZHQKleY9/SYw91fZQoaAZoCWgPQwjFxVG5iWoWwJSGlFKUaBVLMmgWR0CpXeD81n/UdX2UKGgGaAloD0MIPDJWm/9XB8CUhpRSlGgVSzJoFkdAqWCByhi9ZnV9lChoBmgJaA9DCA9FgT6Rp+a/lIaUUpRoFUsyaBZHQKlgHNh3JPt1fZQoaAZoCWgPQwiOdXEbDZAfwJSGlFKUaBVLMmgWR0CpX5g13t8edX2UKGgGaAloD0MILVxWYTOgG8CUhpRSlGgVSzJoFkdAqV8VOj7AL3V9lChoBmgJaA9DCJY/3xYsTSHAlIaUUpRoFUsyaBZHQKlhzR4QjD91fZQoaAZoCWgPQwhWSWQfZKkZwJSGlFKUaBVLMmgWR0CpYWfNqxkedX2UKGgGaAloD0MIkEsceSCyGMCUhpRSlGgVSzJoFkdAqWDhrSE123V9lChoBmgJaA9DCBwLCoMyVSHAlIaUUpRoFUsyaBZHQKlgXtVJcxF1fZQoaAZoCWgPQwjMYmLzcY0jwJSGlFKUaBVLMmgWR0CpYxjQJHAidX2UKGgGaAloD0MIvmckQiOQIsCUhpRSlGgVSzJoFkdAqWKzxEv0y3V9lChoBmgJaA9DCMBZSpaTYC7AlIaUUpRoFUsyaBZHQKliLbZezD51fZQoaAZoCWgPQwggtB6+TCQpwJSGlFKUaBVLMmgWR0CpYar4FiazdX2UKGgGaAloD0MIe/ZcpiYxI8CUhpRSlGgVSzJoFkdAqWRgxWT5f3V9lChoBmgJaA9DCMpS6/1GGwbAlIaUUpRoFUsyaBZHQKlj+20iQkp1fZQoaAZoCWgPQwg9f9qoTt8iwJSGlFKUaBVLMmgWR0CpY3WoNutPdX2UKGgGaAloD0MIONvcmJ7QGsCUhpRSlGgVSzJoFkdAqWLyjafzz3V9lChoBmgJaA9DCJm5wOWx5hzAlIaUUpRoFUsyaBZHQKllo7tiQT51fZQoaAZoCWgPQwilMO9xpokewJSGlFKUaBVLMmgWR0CpZT6Lfk3kdX2UKGgGaAloD0MIQ3QIHAn0JcCUhpRSlGgVSzJoFkdAqWS4uIyj6HV9lChoBmgJaA9DCHE486s54CrAlIaUUpRoFUsyaBZHQKlkNZ7ojfN1fZQoaAZoCWgPQwjCMGDJVfQhwJSGlFKUaBVLMmgWR0CpZuYpDu0DdX2UKGgGaAloD0MIilWDMLfLFcCUhpRSlGgVSzJoFkdAqWaBKWcBl3V9lChoBmgJaA9DCM2RlV8GYwPAlIaUUpRoFUsyaBZHQKll+ymhufp1fZQoaAZoCWgPQwiNnIU97YAewJSGlFKUaBVLMmgWR0CpZXijk+5fdX2UKGgGaAloD0MIbLBwkubPGMCUhpRSlGgVSzJoFkdAqWg1fTkQw3V9lChoBmgJaA9DCO5dg770VhHAlIaUUpRoFUsyaBZHQKln0IDYAbR1fZQoaAZoCWgPQwgNGCR9WoUGwJSGlFKUaBVLMmgWR0CpZ0q+zt1IdX2UKGgGaAloD0MIZOsZwjE7GcCUhpRSlGgVSzJoFkdAqWbHo1UEPnV9lChoBmgJaA9DCOLqAIi7YiDAlIaUUpRoFUsyaBZHQKlpbUgB91F1fZQoaAZoCWgPQwhUOlj/56AmwJSGlFKUaBVLMmgWR0CpaQg2ycCpdX2UKGgGaAloD0MIRrQdU3ftIMCUhpRSlGgVSzJoFkdAqWiCKxcE/3V9lChoBmgJaA9DCF2Hakqy7iHAlIaUUpRoFUsyaBZHQKln/y+6Ae91fZQoaAZoCWgPQwgHJGHfTvIjwJSGlFKUaBVLMmgWR0CparRwAEMcdX2UKGgGaAloD0MIzsXf9gTpIMCUhpRSlGgVSzJoFkdAqWpQGfPHDXV9lChoBmgJaA9DCPymsFJB/SHAlIaUUpRoFUsyaBZHQKlpyrQPZqV1fZQoaAZoCWgPQwjf+UUJ+uMjwJSGlFKUaBVLMmgWR0CpaUiMHbAUdX2UKGgGaAloD0MIMUROX8+3KMCUhpRSlGgVSzJoFkdAqWv7Lr5ZbXV9lChoBmgJaA9DCClAFMyYIh3AlIaUUpRoFUsyaBZHQKlrleqJdjZ1fZQoaAZoCWgPQwiokCv1LCAhwJSGlFKUaBVLMmgWR0Cpaw/Wcz68dX2UKGgGaAloD0MIpg7yejDJCcCUhpRSlGgVSzJoFkdAqWqMsSTQmnV9lChoBmgJaA9DCMgKfhti3B/AlIaUUpRoFUsyaBZHQKltVvNNahZ1fZQoaAZoCWgPQwiRKR+CqiEkwJSGlFKUaBVLMmgWR0CpbPIhyKekdX2UKGgGaAloD0MIijkIOlo1BMCUhpRSlGgVSzJoFkdAqWxtmSQo1HV9lChoBmgJaA9DCKyowTQMdynAlIaUUpRoFUsyaBZHQKlr645Lh751ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 25000,
|
87 |
+
"n_steps": 10,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 0.9,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.4,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaPushDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:473b5b98c35057946ef3750735f0530eb344ee2d0503271f1cb446f13b668e2e
|
3 |
+
size 51454
|
a2c-PandaPushDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7cfade8869adad6f00104ec5e066cc92be044fe84a39e8dc5ac6058d1925888
|
3 |
+
size 52734
|
a2c-PandaPushDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPushDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f302280aaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f30228058a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674378753591633216, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8O04vwklvL92eCA9DLyxv6g9oj92eCA9r9uDP4eBaL92eCA9IjmovoxlnD92eCA9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEq+ZP7OshT9nV6syjtPZv3ceHz5nV6syM+3/PaYTWL9nV6syyNCqPWgRWj9nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD3w7Ti/CSW8v3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD0MvLG/qD2iP3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD2v24M/h4Fov3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbvUvJq+gj+aPlzlQz1T3Sk9StNnPUO4dD0iOai+jGWcP3Z4ID1vDgG80zypvDfxqLtUql48Q5OpOwXSkDxLUpe7jc/4u6ubsbuUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.72238064 -1.4698802 0.03917738]\n [-1.3885512 1.2675066 0.03917738]\n [ 1.0301417 -0.90822643 0.03917738]\n [-0.3285609 1.221849 0.03917738]]", "desired_goal": "[[ 1.2006552e+00 1.0443329e+00 1.9946766e-08]\n [-1.7017686e+00 1.5538965e-01 1.9946766e-08]\n [ 1.2496414e-01 -8.4404981e-01 1.9946766e-08]\n [ 8.3406031e-02 8.5182810e-01 1.9946766e-08]]", "observation": "[[-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -0.72238064 -1.4698802 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -1.3885512 1.2675066 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n 1.0301417 -0.90822643 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]\n [-0.3022219 0.30126578 0.04782616 0.04147084 0.05659799 0.05974604\n -0.3285609 1.221849 0.03917738 -0.00787698 -0.02065889 -0.00515571\n 0.01359041 0.00517503 0.01767827 -0.00461796 -0.0075931 -0.00542017]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAHdz1vCT5GL0K16M87QP9vbbPPT0K16M8gEiJPZwBgr0K16M8Xy3kPTnLCz4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2wKkPVOpuT0K16M8yixevZ0rK70K16M8N42OvdrRib0K16M8zNABPvrD+DwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAd3PW8JPkYvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADtA/29ts89PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACASIk9nAGCvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABfLeQ9OcsLPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.03001218 -0.03734697 0.02 ]\n [-0.12354264 0.04634067 0.02 ]\n [ 0.06703281 -0.06347963 0.02 ]\n [ 0.11141466 0.13651742 0.02 ]]", "desired_goal": "[[ 0.08008357 0.09065499 0.02 ]\n [-0.05424193 -0.04178964 0.02 ]\n [-0.06960528 -0.06729479 0.02 ]\n [ 0.12677306 0.03036689 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 -3.00121848e-02 -3.73469740e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 -1.23542644e-01 4.63406667e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 6.70328140e-02 -6.34796321e-02\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 1.11414663e-01 1.36517420e-01\n 1.99999996e-02 0.00000000e+00 -0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFRvzOuIgKcCUhpRSlIwBbJRLMowBdJRHQKlO6jZ+QU51fZQoaAZoCWgPQwiFC3kEN+olwJSGlFKUaBVLMmgWR0CpToZ75VOsdX2UKGgGaAloD0MIWWq932ifLMCUhpRSlGgVSzJoFkdAqU4BC8e0X3V9lChoBmgJaA9DCLx1/u2yHyHAlIaUUpRoFUsyaBZHQKlNflWfbsZ1fZQoaAZoCWgPQwgwEtpyLoUGwJSGlFKUaBVLMmgWR0CpUCMCDEm6dX2UKGgGaAloD0MItybdlsjF97+UhpRSlGgVSzJoFkdAqU+9vMr3CnV9lChoBmgJaA9DCDI9YYkHNBDAlIaUUpRoFUsyaBZHQKlPN7MPjGV1fZQoaAZoCWgPQwigUE8fgUciwJSGlFKUaBVLMmgWR0CpTrSOzY29dX2UKGgGaAloD0MI1EhL5e14IsCUhpRSlGgVSzJoFkdAqVFsijcmB3V9lChoBmgJaA9DCLYQ5KCEOQzAlIaUUpRoFUsyaBZHQKlRB029+PR1fZQoaAZoCWgPQwjwarkzEywpwJSGlFKUaBVLMmgWR0CpUIJda+vhdX2UKGgGaAloD0MIRIgrZ+98KsCUhpRSlGgVSzJoFkdAqU//hCMP0HV9lChoBmgJaA9DCLtgcM0dPfi/lIaUUpRoFUsyaBZHQKlSmlE7W/d1fZQoaAZoCWgPQwhVwD3Pn1YWwJSGlFKUaBVLMmgWR0CpUjU+9rXUdX2UKGgGaAloD0MI5KHvbmXBJsCUhpRSlGgVSzJoFkdAqVGvNmlImXV9lChoBmgJaA9DCBqnIarwtx3AlIaUUpRoFUsyaBZHQKlRLDbah6B1fZQoaAZoCWgPQwg91/fhIMEAwJSGlFKUaBVLMmgWR0CpU/oXj2i+dX2UKGgGaAloD0MIHY6u0t2VKcCUhpRSlGgVSzJoFkdAqVOVs7+1jXV9lChoBmgJaA9DCPuSjQdbbAvAlIaUUpRoFUsyaBZHQKlTEI1LrX11fZQoaAZoCWgPQwjLgok/inomwJSGlFKUaBVLMmgWR0CpUo2xIJ7cdX2UKGgGaAloD0MIn5RJDW3QGcCUhpRSlGgVSzJoFkdAqVVOrS3LFHV9lChoBmgJaA9DCG3/ykqTsivAlIaUUpRoFUsyaBZHQKlU6n889wF1fZQoaAZoCWgPQwh0YaQXtTsFwJSGlFKUaBVLMmgWR0CpVGSRB/qgdX2UKGgGaAloD0MIa7bykv95GcCUhpRSlGgVSzJoFkdAqVPhgqmTDHV9lChoBmgJaA9DCC1gArfudiDAlIaUUpRoFUsyaBZHQKlWfJVbRnh1fZQoaAZoCWgPQwikNQadECIrwJSGlFKUaBVLMmgWR0CpVhdy1eBydX2UKGgGaAloD0MI5SX/k7+rE8CUhpRSlGgVSzJoFkdAqVWRiobXH3V9lChoBmgJaA9DCJrrNNJSQSbAlIaUUpRoFUsyaBZHQKlVDpvgm7d1fZQoaAZoCWgPQwhRo5BkVt8XwJSGlFKUaBVLMmgWR0CpV8KzZ6D5dX2UKGgGaAloD0MIA9GTMqlhEsCUhpRSlGgVSzJoFkdAqVdeXVsk6nV9lChoBmgJaA9DCHjxftx+KSnAlIaUUpRoFUsyaBZHQKlW2DVYp2F1fZQoaAZoCWgPQwj5hy09mhoawJSGlFKUaBVLMmgWR0CpVlUuDjBEdX2UKGgGaAloD0MI46YGms9ZGcCUhpRSlGgVSzJoFkdAqVj1jNIK+nV9lChoBmgJaA9DCC/9S1KZMhfAlIaUUpRoFUsyaBZHQKlYkEfT1Ch1fZQoaAZoCWgPQwjD19e61JAqwJSGlFKUaBVLMmgWR0CpWArhR64UdX2UKGgGaAloD0MISMMpc/MFJ8CUhpRSlGgVSzJoFkdAqVeIkona4HV9lChoBmgJaA9DCP4Mb9bgzRHAlIaUUpRoFUsyaBZHQKlaP4etCAt1fZQoaAZoCWgPQwi3Jt2WyF0jwJSGlFKUaBVLMmgWR0CpWdpZwGW2dX2UKGgGaAloD0MIZmoSvCFdJMCUhpRSlGgVSzJoFkdAqVlUVzp5eXV9lChoBmgJaA9DCEVj7e9szxrAlIaUUpRoFUsyaBZHQKlY0XgtOEd1fZQoaAZoCWgPQwi0lCwnoewqwJSGlFKUaBVLMmgWR0CpW4Dvuw5edX2UKGgGaAloD0MI3iHFAIkGHMCUhpRSlGgVSzJoFkdAqVscFB6a9nV9lChoBmgJaA9DCHTwTGiSGBzAlIaUUpRoFUsyaBZHQKlalk6Lfk51fZQoaAZoCWgPQwg0+PvFbEEmwJSGlFKUaBVLMmgWR0CpWhNgKF7EdX2UKGgGaAloD0MIH/ZCAduhJMCUhpRSlGgVSzJoFkdAqVy0XYUWVXV9lChoBmgJaA9DCCf20D5WsCXAlIaUUpRoFUsyaBZHQKlcT7Hhjvx1fZQoaAZoCWgPQwgibk4lA6AnwJSGlFKUaBVLMmgWR0CpW8m1pj+adX2UKGgGaAloD0MItB6+TBSRI8CUhpRSlGgVSzJoFkdAqVtG9US7G3V9lChoBmgJaA9DCFEWvr7WPSLAlIaUUpRoFUsyaBZHQKld+La24NJ1fZQoaAZoCWgPQwgVcxB0tBowwJSGlFKUaBVLMmgWR0CpXZP8AJb/dX2UKGgGaAloD0MICjGXVG2HHsCUhpRSlGgVSzJoFkdAqV0N7pmmL3V9lChoBmgJaA9DCDG1pQ7y4iHAlIaUUpRoFUsyaBZHQKlcishgVoJ1fZQoaAZoCWgPQwiFCg4viMjsv5SGlFKUaBVLMmgWR0CpX02krPMTdX2UKGgGaAloD0MIllzF4jfVEsCUhpRSlGgVSzJoFkdAqV7pVU+9rXV9lChoBmgJaA9DCJsdqb7zSwPAlIaUUpRoFUsyaBZHQKleY9/SYw91fZQoaAZoCWgPQwjFxVG5iWoWwJSGlFKUaBVLMmgWR0CpXeD81n/UdX2UKGgGaAloD0MIPDJWm/9XB8CUhpRSlGgVSzJoFkdAqWCByhi9ZnV9lChoBmgJaA9DCA9FgT6Rp+a/lIaUUpRoFUsyaBZHQKlgHNh3JPt1fZQoaAZoCWgPQwiOdXEbDZAfwJSGlFKUaBVLMmgWR0CpX5g13t8edX2UKGgGaAloD0MILVxWYTOgG8CUhpRSlGgVSzJoFkdAqV8VOj7AL3V9lChoBmgJaA9DCJY/3xYsTSHAlIaUUpRoFUsyaBZHQKlhzR4QjD91fZQoaAZoCWgPQwhWSWQfZKkZwJSGlFKUaBVLMmgWR0CpYWfNqxkedX2UKGgGaAloD0MIkEsceSCyGMCUhpRSlGgVSzJoFkdAqWDhrSE123V9lChoBmgJaA9DCBwLCoMyVSHAlIaUUpRoFUsyaBZHQKlgXtVJcxF1fZQoaAZoCWgPQwjMYmLzcY0jwJSGlFKUaBVLMmgWR0CpYxjQJHAidX2UKGgGaAloD0MIvmckQiOQIsCUhpRSlGgVSzJoFkdAqWKzxEv0y3V9lChoBmgJaA9DCMBZSpaTYC7AlIaUUpRoFUsyaBZHQKliLbZezD51fZQoaAZoCWgPQwggtB6+TCQpwJSGlFKUaBVLMmgWR0CpYar4FiazdX2UKGgGaAloD0MIe/ZcpiYxI8CUhpRSlGgVSzJoFkdAqWRgxWT5f3V9lChoBmgJaA9DCMpS6/1GGwbAlIaUUpRoFUsyaBZHQKlj+20iQkp1fZQoaAZoCWgPQwg9f9qoTt8iwJSGlFKUaBVLMmgWR0CpY3WoNutPdX2UKGgGaAloD0MIONvcmJ7QGsCUhpRSlGgVSzJoFkdAqWLyjafzz3V9lChoBmgJaA9DCJm5wOWx5hzAlIaUUpRoFUsyaBZHQKllo7tiQT51fZQoaAZoCWgPQwilMO9xpokewJSGlFKUaBVLMmgWR0CpZT6Lfk3kdX2UKGgGaAloD0MIQ3QIHAn0JcCUhpRSlGgVSzJoFkdAqWS4uIyj6HV9lChoBmgJaA9DCHE486s54CrAlIaUUpRoFUsyaBZHQKlkNZ7ojfN1fZQoaAZoCWgPQwjCMGDJVfQhwJSGlFKUaBVLMmgWR0CpZuYpDu0DdX2UKGgGaAloD0MIilWDMLfLFcCUhpRSlGgVSzJoFkdAqWaBKWcBl3V9lChoBmgJaA9DCM2RlV8GYwPAlIaUUpRoFUsyaBZHQKll+ymhufp1fZQoaAZoCWgPQwiNnIU97YAewJSGlFKUaBVLMmgWR0CpZXijk+5fdX2UKGgGaAloD0MIbLBwkubPGMCUhpRSlGgVSzJoFkdAqWg1fTkQw3V9lChoBmgJaA9DCO5dg770VhHAlIaUUpRoFUsyaBZHQKln0IDYAbR1fZQoaAZoCWgPQwgNGCR9WoUGwJSGlFKUaBVLMmgWR0CpZ0q+zt1IdX2UKGgGaAloD0MIZOsZwjE7GcCUhpRSlGgVSzJoFkdAqWbHo1UEPnV9lChoBmgJaA9DCOLqAIi7YiDAlIaUUpRoFUsyaBZHQKlpbUgB91F1fZQoaAZoCWgPQwhUOlj/56AmwJSGlFKUaBVLMmgWR0CpaQg2ycCpdX2UKGgGaAloD0MIRrQdU3ftIMCUhpRSlGgVSzJoFkdAqWiCKxcE/3V9lChoBmgJaA9DCF2Hakqy7iHAlIaUUpRoFUsyaBZHQKln/y+6Ae91fZQoaAZoCWgPQwgHJGHfTvIjwJSGlFKUaBVLMmgWR0CparRwAEMcdX2UKGgGaAloD0MIzsXf9gTpIMCUhpRSlGgVSzJoFkdAqWpQGfPHDXV9lChoBmgJaA9DCPymsFJB/SHAlIaUUpRoFUsyaBZHQKlpyrQPZqV1fZQoaAZoCWgPQwjf+UUJ+uMjwJSGlFKUaBVLMmgWR0CpaUiMHbAUdX2UKGgGaAloD0MIMUROX8+3KMCUhpRSlGgVSzJoFkdAqWv7Lr5ZbXV9lChoBmgJaA9DCClAFMyYIh3AlIaUUpRoFUsyaBZHQKlrleqJdjZ1fZQoaAZoCWgPQwiokCv1LCAhwJSGlFKUaBVLMmgWR0Cpaw/Wcz68dX2UKGgGaAloD0MIpg7yejDJCcCUhpRSlGgVSzJoFkdAqWqMsSTQmnV9lChoBmgJaA9DCMgKfhti3B/AlIaUUpRoFUsyaBZHQKltVvNNahZ1fZQoaAZoCWgPQwiRKR+CqiEkwJSGlFKUaBVLMmgWR0CpbPIhyKekdX2UKGgGaAloD0MIijkIOlo1BMCUhpRSlGgVSzJoFkdAqWxtmSQo1HV9lChoBmgJaA9DCKyowTQMdynAlIaUUpRoFUsyaBZHQKlr645Lh751ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (769 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -8.83563433215022, "std_reward": 4.761476401782387, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T10:06:51.493488"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01934633fdbed1f12c3c3b3b46f2194c8a8cf886b9301c3146bbad068cc83816
|
3 |
+
size 3536
|