--- library_name: transformers base_model: t-tech/T-lite-it-1.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: T-lite-it-1.0-pseudo-base results: [] --- # t-lite_part1-2_lr1e4_wsd_bs128 This model is a fine-tuned version of [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3980 - Accuracy: 0.6669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - seed: 42 - distributed_type: multi-GPU - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: warmup_stable_decay - lr_scheduler_warmup_steps: 100 - num_epochs: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0001 | 1 | 1.4751 | 0.6606 | | 1.5071 | 0.0354 | 500 | 1.4113 | 0.6647 | | 1.5003 | 0.0709 | 1000 | 1.4080 | 0.6649 | | 1.4959 | 0.1063 | 1500 | 1.4063 | 0.6654 | | 1.5019 | 0.1418 | 2000 | 1.4054 | 0.6655 | | 1.4891 | 0.1772 | 2500 | 1.4047 | 0.6656 | | 1.4916 | 0.2126 | 3000 | 1.4040 | 0.6657 | | 1.496 | 0.2481 | 3500 | 1.4034 | 0.6657 | | 1.495 | 0.2835 | 4000 | 1.4032 | 0.6657 | | 1.4934 | 0.3189 | 4500 | 1.4030 | 0.6658 | | 1.4849 | 0.3544 | 5000 | 1.4029 | 0.6660 | | 1.4833 | 0.3898 | 5500 | 1.4024 | 0.6661 | | 1.4909 | 0.4253 | 6000 | 1.4023 | 0.6661 | | 1.4923 | 0.4607 | 6500 | 1.4000 | 0.6665 | | 1.4965 | 0.4961 | 7000 | 1.3979 | 0.6669 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0a0+6ddf5cf85e.nv24.04 - Datasets 2.18.0 - Tokenizers 0.20.3