|  | ''' | 
					
						
						|  | runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True | 
					
						
						|  | ''' | 
					
						
						|  | import os,sys,pdb,torch | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | import argparse | 
					
						
						|  | import glob | 
					
						
						|  | import sys | 
					
						
						|  | import torch | 
					
						
						|  | from multiprocessing import cpu_count | 
					
						
						|  | class Config: | 
					
						
						|  | def __init__(self,device,is_half): | 
					
						
						|  | self.device = device | 
					
						
						|  | self.is_half = is_half | 
					
						
						|  | self.n_cpu = 0 | 
					
						
						|  | self.gpu_name = None | 
					
						
						|  | self.gpu_mem = None | 
					
						
						|  | self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | 
					
						
						|  |  | 
					
						
						|  | def device_config(self) -> tuple: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | i_device = int(self.device.split(":")[-1]) | 
					
						
						|  | self.gpu_name = torch.cuda.get_device_name(i_device) | 
					
						
						|  | if ( | 
					
						
						|  | ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | 
					
						
						|  | or "P40" in self.gpu_name.upper() | 
					
						
						|  | or "1060" in self.gpu_name | 
					
						
						|  | or "1070" in self.gpu_name | 
					
						
						|  | or "1080" in self.gpu_name | 
					
						
						|  | ): | 
					
						
						|  | print("16系/10系显卡和P40强制单精度") | 
					
						
						|  | self.is_half = False | 
					
						
						|  | for config_file in ["32k.json", "40k.json", "48k.json"]: | 
					
						
						|  | with open(f"configs/{config_file}", "r") as f: | 
					
						
						|  | strr = f.read().replace("true", "false") | 
					
						
						|  | with open(f"configs/{config_file}", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "r") as f: | 
					
						
						|  | strr = f.read().replace("3.7", "3.0") | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | else: | 
					
						
						|  | self.gpu_name = None | 
					
						
						|  | self.gpu_mem = int( | 
					
						
						|  | torch.cuda.get_device_properties(i_device).total_memory | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | / 1024 | 
					
						
						|  | + 0.4 | 
					
						
						|  | ) | 
					
						
						|  | if self.gpu_mem <= 4: | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "r") as f: | 
					
						
						|  | strr = f.read().replace("3.7", "3.0") | 
					
						
						|  | with open("trainset_preprocess_pipeline_print.py", "w") as f: | 
					
						
						|  | f.write(strr) | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | print("没有发现支持的N卡, 使用MPS进行推理") | 
					
						
						|  | self.device = "mps" | 
					
						
						|  | else: | 
					
						
						|  | print("没有发现支持的N卡, 使用CPU进行推理") | 
					
						
						|  | self.device = "cpu" | 
					
						
						|  | self.is_half = True | 
					
						
						|  |  | 
					
						
						|  | if self.n_cpu == 0: | 
					
						
						|  | self.n_cpu = cpu_count() | 
					
						
						|  |  | 
					
						
						|  | if self.is_half: | 
					
						
						|  |  | 
					
						
						|  | x_pad = 3 | 
					
						
						|  | x_query = 10 | 
					
						
						|  | x_center = 60 | 
					
						
						|  | x_max = 65 | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | x_pad = 1 | 
					
						
						|  | x_query = 6 | 
					
						
						|  | x_center = 38 | 
					
						
						|  | x_max = 41 | 
					
						
						|  |  | 
					
						
						|  | if self.gpu_mem != None and self.gpu_mem <= 4: | 
					
						
						|  | x_pad = 1 | 
					
						
						|  | x_query = 5 | 
					
						
						|  | x_center = 30 | 
					
						
						|  | x_max = 32 | 
					
						
						|  |  | 
					
						
						|  | return x_pad, x_query, x_center, x_max | 
					
						
						|  |  | 
					
						
						|  | f0up_key=sys.argv[1] | 
					
						
						|  | input_path=sys.argv[2] | 
					
						
						|  | index_path=sys.argv[3] | 
					
						
						|  | f0method=sys.argv[4] | 
					
						
						|  | opt_path=sys.argv[5] | 
					
						
						|  | model_path=sys.argv[6] | 
					
						
						|  | index_rate=float(sys.argv[7]) | 
					
						
						|  | device=sys.argv[8] | 
					
						
						|  | is_half=bool(sys.argv[9]) | 
					
						
						|  | print(sys.argv) | 
					
						
						|  | config=Config(device,is_half) | 
					
						
						|  | now_dir=os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | from vc_infer_pipeline import VC | 
					
						
						|  | from lib.infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono | 
					
						
						|  | from lib.audio import load_audio | 
					
						
						|  | from fairseq import checkpoint_utils | 
					
						
						|  | from scipy.io import wavfile | 
					
						
						|  |  | 
					
						
						|  | hubert_model=None | 
					
						
						|  | def load_hubert(): | 
					
						
						|  | global hubert_model | 
					
						
						|  | models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) | 
					
						
						|  | hubert_model = models[0] | 
					
						
						|  | hubert_model = hubert_model.to(device) | 
					
						
						|  | if(is_half):hubert_model = hubert_model.half() | 
					
						
						|  | else:hubert_model = hubert_model.float() | 
					
						
						|  | hubert_model.eval() | 
					
						
						|  |  | 
					
						
						|  | def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate): | 
					
						
						|  | global tgt_sr,net_g,vc,hubert_model | 
					
						
						|  | if input_audio is None:return "You need to upload an audio", None | 
					
						
						|  | f0_up_key = int(f0_up_key) | 
					
						
						|  | audio=load_audio(input_audio,16000) | 
					
						
						|  | times = [0, 0, 0] | 
					
						
						|  | if(hubert_model==None):load_hubert() | 
					
						
						|  | if_f0 = cpt.get("f0", 1) | 
					
						
						|  |  | 
					
						
						|  | audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,f0_file=f0_file) | 
					
						
						|  | print(times) | 
					
						
						|  | return audio_opt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_vc(model_path): | 
					
						
						|  | global n_spk,tgt_sr,net_g,vc,cpt,device,is_half | 
					
						
						|  | print("loading pth %s"%model_path) | 
					
						
						|  | cpt = torch.load(model_path, map_location="cpu") | 
					
						
						|  | tgt_sr = cpt["config"][-1] | 
					
						
						|  | cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0] | 
					
						
						|  | if_f0=cpt.get("f0",1) | 
					
						
						|  | if(if_f0==1): | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) | 
					
						
						|  | else: | 
					
						
						|  | net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | 
					
						
						|  | del net_g.enc_q | 
					
						
						|  | print(net_g.load_state_dict(cpt["weight"], strict=False)) | 
					
						
						|  | net_g.eval().to(device) | 
					
						
						|  | if (is_half):net_g = net_g.half() | 
					
						
						|  | else:net_g = net_g.float() | 
					
						
						|  | vc = VC(tgt_sr, config) | 
					
						
						|  | n_spk=cpt["config"][-3] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | get_vc(model_path) | 
					
						
						|  | wav_opt=vc_single(0,input_path,f0up_key,None,f0method,index_path,index_rate) | 
					
						
						|  | wavfile.write(opt_path, tgt_sr, wav_opt) | 
					
						
						|  |  | 
					
						
						|  |  |