--- tags: - w4a16 - int4 - vllm - audio license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: openai/whisper-small library_name: transformers --- # whisper-small-quantized.w4a16 ## Model Overview - **Model Architecture:** whisper-small - **Input:** Audio-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Release Date:** 04/16/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [openai/whisper-small](https://huggingface.co/openai/whisper-small). ### Model Optimizations This model was obtained by quantizing the weights of [openai/whisper-small](https://huggingface.co/openai/whisper-small) to INT4 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.audio import AudioAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/whisper-small-quantized.w4a16", max_model_len=448, max_num_seqs=400, limit_mm_per_prompt={"audio": 1}, ) # prepare inputs inputs = { # Test explicit encoder/decoder prompt "encoder_prompt": { "prompt": "", "multi_modal_data": { "audio": AudioAsset("winning_call").audio_and_sample_rate, }, }, "decoder_prompt": "<|startoftranscript|>", } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code ```bash python quantize.py --model_path openai/whisper-small --quant_path "output_dir/whisper-small-quantized.w4a16" --calib_size 1024 --group_size 64 --dampening_frac 0.01 --actorder weight ``` ```python import torch import argparse from datasets import load_dataset from transformers import WhisperProcessor from llmcompressor import oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration import os from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme from llmcompressor.modifiers.smoothquant import SmoothQuantModifier parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.1) parser.add_argument('--observer', type=str, default="minmax") parser.add_argument('--actorder', type=str, default="dynamic") parser.add_argument('--group_size', type=int, default=128) parser.add_argument('--save_dir', type=str, required=True) args = parser.parse_args() model_id = args.model_path model = TraceableWhisperForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) model.config.forced_decoder_ids = None processor = WhisperProcessor.from_pretrained(model_id) # Configure processor the dataset task. processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") # Select calibration dataset. DATASET_ID = "MLCommons/peoples_speech" DATASET_SUBSET = "test" DATASET_SPLIT = "test" # Select number of samples for calibration. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = args.calib_size MAX_SEQUENCE_LENGTH = 2048 dampening_frac=args.dampening_frac actorder_arg=args.actorder group_size=args.group_size # Load dataset and preprocess. ds = load_dataset( DATASET_ID, DATASET_SUBSET, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", trust_remote_code=True, ) def preprocess(example): return { "array": example["audio"]["array"], "sampling_rate": example["audio"]["sampling_rate"], "text": " " + example["text"].capitalize(), } ds = ds.map(preprocess, remove_columns=ds.column_names) # Process inputs. def process(sample): inputs = processor( audio=sample["array"], sampling_rate=sample["sampling_rate"], text=sample["text"], add_special_tokens=True, return_tensors="pt", ) inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype) inputs["decoder_input_ids"] = inputs["labels"] del inputs["labels"] return inputs ds = ds.map(process, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} ignore=["lm_head"] # Recipe recipe = GPTQModifier( targets="Linear", config_groups={ "config_group": QuantizationScheme( targets=["Linear"], weights=QuantizationArgs( num_bits=4, type=QuantizationType.INT, strategy=QuantizationStrategy.GROUP, group_size=group_size, symmetric=True, dynamic=False, actorder=getattr(ActivationOrdering, actorder_arg.upper()), ), ), }, sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"], ignore=["re:.*lm_head"], update_size=NUM_CALIBRATION_SAMPLES, dampening_frac=dampening_frac ) # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, data_collator=data_collator, ) # Save to disk compressed. save_name = f"{model_id.split('/')[-1]}-quantized.w4a16" save_path = os.path.join(args.save_dir, save_name) print("Saving model:", save_path) model.save_pretrained(save_path, save_compressed=True) processor.save_pretrained(save_path) ```
## Evaluation The model was evaluated on [LibriSpeech](https://huggingface.co/datasets/lmms-lab/librispeech) and [Fleurs](https://huggingface.co/datasets/lmms-lab/fleurs) datasets using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), via the following commands:
Evaluation Commands Librispeech: ``` lmms-eval \ --model=whisper_vllm \ --model_args="pretrained=neuralmagic-ent/whisper-small-quantized.w4a16" \ --batch_size 64 \ --output_path \ --tasks librispeech ``` Fleurs: ``` lmms-eval \ --model=whisper_vllm \ --model_args="pretrained=neuralmagic-ent/whisper-small-quantized.w4a16" \ --batch_size 64 \ --output_path \ --tasks fleurs ```
Benchmark Split BF16 W4A16 Recovery (%)
LibriSpeech (WER) test-clean 3.4435 3.5246 97.70%
test-other 7.4884 7.9422 94.30%
Fleurs (X→en, WER) cmn_hans_cn 23.0642 25.5212 90.37%
en 6.2002 6.5092 95.25%
yue_hant_hk 16.2557 22.2870 73.93%