---
tags:
- FP8
- vllm
- audio
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: openai/whisper-small
library_name: transformers
---
# whisper-small-FP8-Dynamic
## Model Overview
- **Model Architecture:** whisper-small
- **Input:** Audio-Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:** 04/16/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [openai/whisper-small](https://huggingface.co/openai/whisper-small).
### Model Optimizations
This model was obtained by quantizing the weights of [openai/whisper-small](https://huggingface.co/openai/whisper-small) to FP8 data type, ready for inference with vLLM >= 0.5.2.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm.assets.audio import AudioAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/whisper-small-FP8-Dynamic",
max_model_len=448,
max_num_seqs=400,
limit_mm_per_prompt={"audio": 1},
)
# prepare inputs
inputs = { # Test explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"audio": AudioAsset("winning_call").audio_and_sample_rate,
},
},
"decoder_prompt": "<|startoftranscript|>",
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code
```bash
python quantize.py \
--model_path openai/whisper-small \
--quant_path output_dir/whisper-small-FP8-Dynamic
```
```python
import argparse
import torch
import os
from datasets import load_dataset
from transformers import WhisperProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
from compressed_tensors.quantization import QuantizationType
# --- Args ---
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--quant_path', type=str, required=True)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()
# --- Load Model ---
model = TraceableWhisperForConditionalGeneration.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
)
model.config.forced_decoder_ids = None
processor = WhisperProcessor.from_pretrained(args.model_path)
# --- Recipe (FP8 Dynamic) ---
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"],
ignore=["re:.*lm_head"],
)
]
# --- Run oneshot ---
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
)
# --- Save ---
os.makedirs(args.quant_path, exist_ok=True)
model.save_pretrained(args.quant_path, save_compressed=True)
processor.save_pretrained(args.quant_path)
```
Evaluation Commands
Librispeech:
```
lmms-eval \
--model=whisper_vllm \
--model_args="pretrained=neuralmagic-ent/whisper-small-FP8-Dynamic" \
--batch_size 64 \
--output_path
Benchmark | Split | BF16 | w8a8 | Recovery (%) |
---|---|---|---|---|
LibriSpeech (WER) | test-clean | 3.4435 | 3.5454 | 100.22% |
test-other | 7.4884 | 7.5281 | 100.03% | |
Fleurs (X→en, WER) | cmn_hans_cn | 23.0642 | 24.6761 | 93.50% |
en | 6.2002 | 6.1110 | 101.46% | |
yue_hant_hk | 16.2557 | 18.1627 | 89.50% |