--- tags: - fp8 - vllm license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: ibm-granite/granite-3.1-8b-instruct library_name: transformers ---

Granite-3.1-8b-instruct-FP8-dynamic Model Icon

Validated Badge ## Model Overview - **Model Architecture:** granite-3.1-8b-instruct - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 1/8/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct). It achieves an average score of 70.57 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30. ### Model Optimizations This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 1 model_name = "neuralmagic/granite-3.1-8b-instruct-FP8-dynamic" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server ```bash $ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/granite-3.1-8b-instruct-FP8-dynamic ``` ​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
Deploy on Red Hat Enterprise Linux AI ```bash # Download model from Red Hat Registry via docker # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. ilab model download --repository docker://registry.redhat.io/rhelai1/granite-3-1-8b-instruct-fp8-dynamic:1.5 ``` ```bash # Serve model via ilab ilab model serve --model-path ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic -- --trust-remote-code # Chat with model ilab model chat --model ~/.cache/instructlab/models/granite-3-1-8b-instruct-fp8-dynamic ``` See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
Deploy on Red Hat Openshift AI ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: granite-3-1-8b-instruct-fp8-dynamic # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: granite-3-1-8b-instruct-fp8-dynamic # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: args: - '--trust-remote-code' modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: registry.redhat.io/rhelai1/modelcar-granite-3-1-8b-instruct-fp8-dynamic:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml # Apply the InferenceService oc apply -f qwen-inferenceservice.yaml ``` ```python # Replace and below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://-predictor-default./v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "Llama-4-Maverick-17B-128E-Instruct-FP8", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code ```bash python quantize.py --model_id ibm-granite/granite-3.1-8b-instruct --save_path "output_dir/" ``` ```python import argparse from transformers import AutoModelForCausalLM, AutoTokenizer from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot import os def main(): parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') parser.add_argument('--model_id', type=str, required=True, help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') parser.add_argument('--save_path', type=str, default='.', help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic') args = parser.parse_args() # Load model model = AutoModelForCausalLM.from_pretrained( args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(args.model_id) # Configure the quantization algorithm and scheme recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] ) # Apply quantization oneshot(model=model, recipe=recipe) save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic") os.makedirs(save_path, exist_ok=True) # Save to disk in compressed-tensors format model.save_pretrained(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer saved to: {save_path}") if __name__ == "__main__": main() ```
## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
Evaluation Commands OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/granite-3.1-8b-instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` #### HumanEval ##### Generation ``` python3 codegen/generate.py \ --model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic \ --bs 16 \ --temperature 0.2 \ --n_samples 50 \ --root "." \ --dataset humaneval ``` ##### Sanitization ``` python3 evalplus/sanitize.py \ humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2 ``` ##### Evaluation ``` evalplus.evaluate \ --dataset humaneval \ --samples humaneval/neuralmagic--granite-3.1-8b-instruct-FP8-dynamic_vllm_temp_0.2-sanitized ```
### Accuracy
Category Metric ibm-granite/granite-3.1-8b-instruct neuralmagic/granite-3.1-8b-instruct-FP8-dynamic Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 66.81 66.81 100.00
GSM8K (Strict-Match, 5-shot) 64.52 66.64 103.29
HellaSwag (Acc-Norm, 10-shot) 84.18 84.16 99.98
MMLU (Acc, 5-shot) 65.52 65.36 99.76
TruthfulQA (MC2, 0-shot) 60.57 60.52 99.92
Winogrande (Acc, 5-shot) 80.19 79.95 99.70
Average Score 70.30 70.57 100.39
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 74.10 73.62 99.35
BBH (Acc-Norm, 3-shot) 53.19 53.26 100.13
Math-Hard (Exact-Match, 4-shot) 14.77 16.79 113.66
GPQA (Acc-Norm, 0-shot) 31.76 32.58 102.58
MUSR (Acc-Norm, 0-shot) 46.01 47.34 102.89
MMLU-Pro (Acc, 5-shot) 35.81 35.72 99.75
Average Score 42.61 43.22 101.43
Coding HumanEval Pass@1 71.00 69.90 98.45
## Inference Performance This model achieves up to 1.5x speedup in single-stream deployment and up to 1.1x speedup in multi-stream asynchronous deployment on L40 GPUs. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
Benchmarking Command ``` guidellm --model neuralmagic/granite-3.1-8b-instruct-FP8-dynamic --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=,generated_tokens=" --max seconds 360 --backend aiohttp_server ```
### Single-stream performance (measured with vLLM version 0.6.6.post1)
Latency (s)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
L40 granite-3.1-8b-instruct 25.1 3.2 25.3 3.2 3.2 6.3 13.4
granite-3.1-8b-instruct-FP8-dynamic
(this model)
1.47 16.8 2.2 17.1 2.2 2.1 4.2 9.3
granite-3.1-8b-instruct-quantized.w4a16 2.72 8.9 1.2 9.2 1.2 1.1 2.3 5.3
### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
Maximum Throughput (Queries per Second)
GPU class Model Speedup Code Completion
prefill: 256 tokens
decode: 1024 tokens
Docstring Generation
prefill: 768 tokens
decode: 128 tokens
Code Fixing
prefill: 1024 tokens
decode: 1024 tokens
RAG
prefill: 1024 tokens
decode: 128 tokens
Instruction Following
prefill: 256 tokens
decode: 128 tokens
Multi-turn Chat
prefill: 512 tokens
decode: 256 tokens
Large Summarization
prefill: 4096 tokens
decode: 512 tokens
L40 granite-3.1-8b-instruct 1.4 7.8 1.1 6.2 15.5 6.0 0.7
granite-3.1-8b-instruct-FP8-dynamic
(this model)
1.12 2.1 7.4 1.3 5.9 15.3 6.9 0.8
granite-3.1-2b-instruct-quantized.w4a16 1.29 2.4 8.9 1.4 7.1 17.8 7.8 1.0