--- tags: - vllm - vision - w4a16 license: gemma base_model: google/gemma-3-27b-it library_name: transformers --- # gemma-3-27b-it-quantized.w4a16 ## Model Overview - **Model Architecture:** google/gemma-3-27b-it - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** FP16 - **Release Date:** 6/4/2025 - **Version:** 1.0 - **Model Developers:** RedHatAI Quantized version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it). ### Model Optimizations This model was obtained by quantizing the weights of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) to INT4 data type, ready for inference with vLLM >= 0.8.0. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from vllm.assets.image import ImageAsset from transformers import AutoProcessor # Define model name once model_name = "RedHatAI/gemma-3-27b-it-quantized.w4a16" # Load image and processor image = ImageAsset("cherry_blossom").pil_image.convert("RGB") processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) # Build multimodal prompt chat = [ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]}, {"role": "assistant", "content": []} ] prompt = processor.apply_chat_template(chat, add_generation_prompt=True) # Initialize model llm = LLM(model=model_name, trust_remote_code=True) # Run inference inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}} outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) # Display result print("RESPONSE:", outputs[0].outputs[0].text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below:
Model Creation Code ```python import base64 from io import BytesIO import torch from datasets import load_dataset from transformers import AutoProcessor, Gemma3ForConditionalGeneration from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot # Load model. model_id = "google/gemma-3-27b-it" model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Oneshot arguments DATASET_ID = "neuralmagic/calibration" DATASET_SPLIT = {"LLM": "train[:1024]"} NUM_CALIBRATION_SAMPLES = 1024 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42) dampening_frac=0.07 def data_collator(batch): assert len(batch) == 1, "Only batch size of 1 is supported for calibration" item = batch[0] collated = {} import torch for key, value in item.items(): if isinstance(value, torch.Tensor): collated[key] = value.unsqueeze(0) elif isinstance(value, list) and isinstance(value[0][0], int): # Handle tokenized inputs like input_ids, attention_mask collated[key] = torch.tensor(value) elif isinstance(value, list) and isinstance(value[0][0], float): # Handle possible float sequences collated[key] = torch.tensor(value) elif isinstance(value, list) and isinstance(value[0][0], torch.Tensor): # Handle batched image data (e.g., pixel_values as [C, H, W]) collated[key] = torch.stack(value) # -> [1, C, H, W] elif isinstance(value, torch.Tensor): collated[key] = value else: print(f"[WARN] Unrecognized type in collator for key={key}, type={type(value)}") return collated # Recipe recipe = [ GPTQModifier( targets="Linear", ignore=["re:.*lm_head.*", "re:.*embed_tokens.*", "re:vision_tower.*", "re:multi_modal_projector.*"], sequential_update=True, sequential_targets=["Gemma3DecoderLayer"], dampening_frac=dampening_frac, ) ] SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16" # Perform oneshot oneshot( model=model, tokenizer=model_id, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, output_dir=SAVE_DIR ) ```
## Evaluation The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
Evaluation Commands ### OpenLLM v1 ``` lm_eval \ --model vllm \ --model_args pretrained="",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \ --tasks openllm \ --batch_size auto ```
### Accuracy
Category Metric google/gemma-3-27b-it RedHatAI/gemma-3-27b-it-quantized.w8a8 Recovery (%)
OpenLLM V1 ARC Challenge 72.53% 72.35% 99.76%
GSM8K 92.12% 91.66% 99.51%
Hellaswag 85.78% 84.97% 99.06%
MMLU 77.53% 76.77% 99.02%
Truthfulqa (mc2) 62.20% 62.57% 100.59%
Winogrande 79.40% 79.79%% 100.50%
Average Score 78.26% 78.02% 99.70%
Vision Evals MMMU (val) 50.89% 51.78% 101.75%
ChartQA 72.16% 72.20% 100.06%
Average Score 61.53% 61.99% 100.90%