--- tags: - vllm - vision - fp8 license: apache-2.0 license_link: >- https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: google/gemma-3-27b-it library_name: transformers --- # gemma-3-27b-it-FP8-Dynamic ## Model Overview - **Model Architecture:** gemma-3-27b-it - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 2/24/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it). ### Model Optimizations This model was obtained by quantizing the weights of [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it) to FP8 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from vllm.assets.image import ImageAsset from transformers import AutoProcessor # Define model name once model_name = "RedHatAI/gemma-3-27b-it-FP8-dynamic" # Load image and processor image = ImageAsset("cherry_blossom").pil_image.convert("RGB") processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) # Build multimodal prompt chat = [ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]}, {"role": "assistant", "content": []} ] prompt = processor.apply_chat_template(chat, add_generation_prompt=True) # Initialize model llm = LLM(model=model_name, trust_remote_code=True) # Run inference inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}} outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) # Display result print("RESPONSE:", outputs[0].outputs[0].text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
Model Creation Code ```python import requests import torch from PIL import Image from transformers import AutoProcessor, Gemma3ForConditionalGeneration from llmcompressor.transformers import oneshot from llmcompressor.modifiers.quantization import QuantizationModifier # Load model. model_id = google/gemma-3-27b-it model = Gemma3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto" ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Recipe recipe = [ QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", sequential_targets=["Gemma3DecoderLayer"], ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], ), ] SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic" # Perform oneshot oneshot( model=model, recipe=recipe, trust_remote_code_model=True, output_dir=SAVE_DIR ) ```
## Evaluation The model was evaluated using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
Evaluation Commands ### OpenLLM v1 ``` lm_eval \ --model vllm \ --model_args pretrained="",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \ --tasks openllm \ --batch_size auto ```
### Accuracy
Category Metric google/gemma-3-27b-it RedHatAI/gemma-3-27b-it-FP8-Dynamic Recovery (%)
OpenLLM V1 ARC Challenge 72.53% 72.70% 100.24%
GSM8K 92.12% 91.51% 99.34%
Hellaswag 85.78% 85.69% 99.90%
MMLU 77.53% 77.45% 99.89%
Truthfulqa (mc2) 62.20% 62.20% 99.99%
Winogrande 79.40% 78.77% 99.20%
Average Score 78.26% 78.05% 99.73%
Vision Evals MMMU (val) 50.89% 51.00% 100.22%
ChartQA 72.16% 72.16% 100.0%
Average Score 61.53% 61.58% 100.11%%