--- tags: - vllm - vision - w8a8 license: apache-2.0 license_link: >- https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers --- # Qwen2.5-VL-7B-Instruct-quantized-w8a8 ## Model Overview - **Model Architecture:** Qwen/Qwen2.5-VL-7B-Instruct - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Activation quantization:** INT8 - **Release Date:** 2/24/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). ### Model Optimizations This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.image import ImageAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8", trust_remote_code=True, max_model_len=4096, max_num_seqs=2, ) # prepare inputs question = "What is the content of this image?" inputs = { "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", "multi_modal_data": { "image": ImageAsset("cherry_blossom").pil_image.convert("RGB") }, } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. <details> <summary>Model Creation Code</summary> ```python import base64 from io import BytesIO import torch from datasets import load_dataset from qwen_vl_utils import process_vision_info from transformers import AutoProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import ( TraceableQwen2_5_VLForConditionalGeneration, ) # Load model. model_id = "Qwen/Qwen2.5-VL-7B-Instruct" model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Oneshot arguments DATASET_ID = "lmms-lab/flickr30k" DATASET_SPLIT = {"calibration": "test[:512]"} NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42) dampening_frac=0.01 # Apply chat template and tokenize inputs. def preprocess_and_tokenize(example): # preprocess buffered = BytesIO() example["image"].save(buffered, format="PNG") encoded_image = base64.b64encode(buffered.getvalue()) encoded_image_text = encoded_image.decode("utf-8") base64_qwen = f"data:image;base64,{encoded_image_text}" messages = [ { "role": "user", "content": [ {"type": "image", "image": base64_qwen}, {"type": "text", "text": "What does the image show?"}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) # tokenize return processor( text=[text], images=image_inputs, videos=video_inputs, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, ) ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = [ GPTQModifier( targets="Linear", scheme="W8A8", sequential_targets=["Qwen2_5_VLDecoderLayer"], ignore=["lm_head", "re:visual.*"], ), ] SAVE_DIR==f"{model_id.split('/')[1]}-quantized.w8a8" # Perform oneshot oneshot( model=model, tokenizer=model_id, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, output_dir=SAVE_DIR ) ``` </details> ## Evaluation The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: <details> <summary>Evaluation Commands</summary> ### Vision Tasks - vqav2 - docvqa - mathvista - mmmu - chartqa ``` vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 python -m eval.run eval_vllm \ --model_name neuralmagic/pixtral-12b-quantized.w8a8 \ --url http://0.0.0.0:8000 \ --output_dir ~/tmp \ --eval_name <vision_task_name> ``` ### Text-based Tasks #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks mmlu \ --num_fewshot 5 \ --batch_size auto \ --output_path output_dir ``` #### MGSM ``` lm_eval \ --model vllm \ --model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \ --tasks mgsm_cot_native \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto \ --output_path output_dir ``` </details> ### Accuracy <table> <thead> <tr> <th>Category</th> <th>Metric</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <th>Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <th>Recovery (%)</th> </tr> </thead> <tbody> <tr> <td rowspan="6"><b>Vision</b></td> <td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>52.00</td> <td>52.33</td> <td>100.63%</td> </tr> <tr> <td>VQAv2 (val)<br><i>vqa_match</i></td> <td>75.59</td> <td>75.46</td> <td>99.83%</td> </tr> <tr> <td>DocVQA (val)<br><i>anls</i></td> <td>94.27</td> <td>94.09</td> <td>99.81%</td> </tr> <tr> <td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> <td>86.44</td> <td>86.16</td> <td>99.68%</td> </tr> <tr> <td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> <td>69.47</td> <td>70.47</td> <td>101.44%</td> </tr> <tr> <td><b>Average Score</b></td> <td><b>75.95</b></td> <td><b>75.90</b></td> <td><b>99.93%</b></td> </tr> <tr> <td rowspan="3"><b>Text</b></td> <td>MGSM (CoT)</td> <td>56.38</td> <td>55.13</td> <td>97.78%</td> </tr> <tr> <td>MMLU (5-shot)</td> <td>71.09</td> <td>70.57</td> <td>99.27%</td> </tr> </tbody> </table> ## Inference Performance This model achieves up to 1.56x speedup in single-stream deployment and 1.5x in multi-stream deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). <details> <summary>Benchmarking Command</summary> ``` guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server ``` </details> ### Single-stream performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> <th>Latency (s)th> <th>Queries Per Dollar</th> <th>Latency (s)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>4.9</td> <td>912</td> <td>3.2</td> <td>1386</td> <td>3.1</td> <td>1431</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.50</td> <td>3.6</td> <td>1248</td> <td>2.1</td> <td>2163</td> <td>2.0</td> <td>2237</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>2.05</td> <td>3.3</td> <td>1351</td> <td>1.4</td> <td>3252</td> <td>1.4</td> <td>3321</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.8</td> <td>707</td> <td>1.7</td> <td>1162</td> <td>1.7</td> <td>1198</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.24</td> <td>2.4</td> <td>851</td> <td>1.4</td> <td>1454</td> <td>1.3</td> <td>1512</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.49</td> <td>2.2</td> <td>912</td> <td>1.1</td> <td>1791</td> <td>1.0</td> <td>1950</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>2.0</td> <td>557</td> <td>1.2</td> <td>919</td> <td>1.2</td> <td>941</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.28</td> <td>1.6</td> <td>698</td> <td>0.9</td> <td>1181</td> <td>0.9</td> <td>1219</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.6</td> <td>686</td> <td>0.9</td> <td>1191</td> <td>0.9</td> <td>1228</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) <table border="1" class="dataframe"> <thead> <tr> <th></th> <th></th> <th></th> <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> </tr> <tr> <th>Hardware</th> <th>Model</th> <th>Average Cost Reduction</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> <th>Maximum throughput (QPS)</th> <th>Queries Per Dollar</th> </tr> </thead> <tbody style="text-align: center"> <tr> <th rowspan="3" valign="top">A6000x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.4</td> <td>1837</td> <td>1.5</td> <td>6846</td> <td>1.7</td> <td>7638</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.41</td> <td>0.5</td> <td>2297</td> <td>2.3</td> <td>10137</td> <td>2.5</td> <td>11472</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.60</td> <td>0.4</td> <td>1828</td> <td>2.7</td> <td>12254</td> <td>3.4</td> <td>15477</td> </tr> <tr> <th rowspan="3" valign="top">A100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.7</td> <td>1347</td> <td>2.6</td> <td>5221</td> <td>3.0</td> <td>6122</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th> <td>1.27</td> <td>0.8</td> <td>1639</td> <td>3.4</td> <td>6851</td> <td>3.9</td> <td>7918</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.21</td> <td>0.7</td> <td>1314</td> <td>3.0</td> <td>5983</td> <td>4.6</td> <td>9206</td> </tr> <tr> <th rowspan="3" valign="top">H100x1</th> <th>Qwen/Qwen2.5-VL-7B-Instruct</th> <td></td> <td>0.9</td> <td>969</td> <td>3.1</td> <td>3358</td> <td>3.3</td> <td>3615</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th> <td>1.29</td> <td>1.2</td> <td>1331</td> <td>3.8</td> <td>4109</td> <td>4.2</td> <td>4598</td> </tr> <tr> <th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th> <td>1.28</td> <td>1.2</td> <td>1298</td> <td>3.8</td> <td>4190</td> <td>4.2</td> <td>4573</td> </tr> </tbody> </table> **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens **QPS: Queries per second. **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).