--- license: apache-2.0 language: - en tags: - moe - w4a16 - int4 - vllm --- # Mixtral-8x22B-v0.1-quantized.w4a16 ## Model Overview - **Model Architecture:** Mixtral-8x22B-v0.1 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** None - **Release Date:** 3/1/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1). It achieves an average score of 74.17 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 74.69. ### Model Optimizations This model was obtained by only quantizing the weights to INT4 data type, ready for inference with vLLM >= 0.5.2. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized, except the MLP routers. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 4 model_name = "neuralmagic-ent/Mixtral-8x22B-v0.1-quantized.w4a16" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command: ```bash python quantize.py --model_path mistralai/Mixtral-8x22B-v0.1 --quant_path "output_dir" --calib_size 1024 --dampening_frac 0.1 --observer minmax --actorder False ``` ```python from datasets import load_dataset from transformers import AutoTokenizer from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply import argparse from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy from llmcompressor.transformers.compression.helpers import calculate_offload_device_map import torch def parse_actorder(value): # Interpret the input value for --actorder if value.lower() == "false": return False elif value.lower() == "group": return "group" else: raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.") parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--num_bits', type=int, default=4) parser.add_argument('--sequential_update', type=bool, default=True) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.05) parser.add_argument('--observer', type=str, default="minmax") parser.add_argument( '--actorder', type=parse_actorder, default=False, # Default value is False help="Specify actorder as 'group' (string) or False (boolean)." ) args = parser.parse_args() device_map = calculate_offload_device_map( args.model_path, reserve_for_hessians=True, num_gpus=torch.cuda.device_count(), torch_dtype=torch.bfloat16, trust_remote_code=True, ) model = SparseAutoModelForCausalLM.from_pretrained( args.model_path, device_map=device_map, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained(args.model_path) NUM_CALIBRATION_SAMPLES = args.calib_size DATASET_ID = "garage-bAInd/Open-Platypus" DATASET_SPLIT = "train" ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): concat_txt = example["instruction"] + "\n" + example["output"] return {"text": concat_txt} ds = ds.map(preprocess) def tokenize(sample): return tokenizer( sample["text"], padding=False, truncation=False, add_special_tokens=True, ) ds = ds.map(tokenize, remove_columns=ds.column_names) quant_scheme = QuantizationScheme( targets=["Linear"], weights=QuantizationArgs( num_bits=args.num_bits, type=QuantizationType.INT, symmetric=True, group_size=128, strategy=QuantizationStrategy.GROUP, observer=args.observer, actorder=args.actorder ), input_activations=None, output_activations=None, ) recipe = [ GPTQModifier( targets=["Linear"], ignore=["lm_head", "re:.*block_sparse_moe.gate"], sequential_update=args.sequential_update, dampening_frac=args.dampening_frac, config_groups={"group_0": quant_scheme}, ) ] oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size, ) # Save to disk compressed. SAVE_DIR = args.quant_path model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) using the following command: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic-ent/Mixtral-8x22B-v0.1-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=4,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` ### Accuracy #### OpenLLM Leaderboard V1 evaluation scores | Metric | mistralai/Mixtral-8x22B-v0.1 | neuralmagic-ent/Mixtral-8x22B-v0.1-quantized.w4a16 | |-----------------------------------------|:---------------------------------:|:-------------------------------------------:| | ARC-Challenge (Acc-Norm, 25-shot) | 70.39 | 69.88 | | GSM8K (Strict-Match, 5-shot) | 76.42 | 74.68 | | HellaSwag (Acc-Norm, 10-shot) | 88.31 | 87.94 | | MMLU (Acc, 5-shot) | 77.40 | 76.21 | | TruthfulQA (MC2, 0-shot) | 51.17 | 51.15 | | Winogrande (Acc, 5-shot) | 84.45 | 85.16 | | **Average Score** | **74.69** | **74.17** | | **Recovery** | **100.00** | **99.30** |