---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
base_model:
- mistralai/Mistral-Small-3.1-24B-Instruct-2503
pipeline_tag: image-text-to-text
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- FP8
---
Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
## Model Overview
- **Model Architecture:** Mistral3ForConditionalGeneration
- **Input:** Text / Image
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** FP8
- **Weight quantization:** FP8
- **Intended Use Cases:** It is ideal for:
- Fast-response conversational agents.
- Low-latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- **Release Date:** 04/15/2025
- **Version:** 1.0
- **Model Developers:** RedHat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing activations and weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to FP8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic"
number_gpus = 4
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
processor = AutoProcessor.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 1 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic
```
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
Deploy on Red Hat Enterprise Linux AI
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503-fp8-dynamic:1.5
```
```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-fp8-dynamic
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-fp8-dynamic
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
Deploy on Red Hat Openshift AI
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
```
```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: mistral-small-3-1-24b-instruct-2503-fp8-dynamic # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: mistral-small-3-1-24b-instruct-2503-fp8-dynamic # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503-fp8-dynamic:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
```
```bash
# make sure first to be in the project where you want to deploy the model
# oc project
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```
```python
# Replace and below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://-predictor-default./v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "mistral-small-3-1-24b-instruct-2503-fp8-dynamic",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
```
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForImageTextToText, AutoProcessor
# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
model = AutoModelForImageTextToText.from_pretrained(model_stub)
processor = AutoProcessor.from_pretrained(model_stub)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
targets="Linear",
scheme="FP8_dynamic",
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
## Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP.
Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus).
[vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases.
Evaluation details
**MMLU**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**ARC Challenge**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks arc_challenge \
--num_fewshot 25 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**GSM8k**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks gsm8k \
--num_fewshot 8 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**Hellaswag**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**Winogrande**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**TruthfulQA**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--apply_chat_template\
--batch_size auto
```
**MMLU-pro**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu_pro \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**Coding**
The commands below can be used for mbpp by simply replacing the dataset name.
*Generation*
```
python3 codegen/generate.py \
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
*Sanitization*
```
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2
```
*Evaluation*
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic_vllm_temp_0.2-sanitized
```
### Accuracy
Category
|
Benchmark
|
Mistral-Small-3.1-24B-Instruct-2503
|
Mistral-Small-3.1-24B-Instruct-2503-FP8-dynamic (this model)
|
Recovery
|
OpenLLM v1
|
MMLU (5-shot)
|
80.67
|
80.71
|
100.1%
|
ARC Challenge (25-shot)
|
72.78
|
72.87
|
100.1%
|
GSM-8K (5-shot, strict-match)
|
58.68
|
49.96
|
85.1%
|
Hellaswag (10-shot)
|
83.70
|
83.67
|
100.0%
|
Winogrande (5-shot)
|
83.74
|
82.56
|
98.6%
|
TruthfulQA (0-shot, mc2)
|
70.62
|
70.88
|
100.4%
|
Average
|
75.03
|
73.49
|
97.9%
|
|
MMLU-Pro (5-shot)
|
67.25
|
66.86
|
99.4%
|
GPQA CoT main (5-shot)
|
42.63
|
41.07
|
99.4%
|
GPQA CoT diamond (5-shot)
|
45.96
|
45.45
|
98.9%
|
Coding
|
HumanEval pass@1
|
84.70
|
84.70
|
100.0%
|
HumanEval+ pass@1
|
79.50
|
79.30
|
99.8%
|
MBPP pass@1
|
71.10
|
70.00
|
98.5%
|
MBPP+ pass@1
|
60.60
|
59.50
|
98.2%
|