--- license: apache-2.0 language: - en tags: - mistral - mistral-small - int8 - vllm base_model: mistralai/Mistral-Small-24B-Instruct-2501 library_name: transformers ---

Mistral-Small-24B-Instruct-2501-quantized.w4a16 Model Icon

Validated Badge ## Model Overview - **Model Architecture:** Mistral-Small-24B-Instruct-2501 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** None - **Release Date:** 3/1/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). ### Model Optimizations This model was obtained by quantizing the weights to INT4 data type, ready for inference with vLLM. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%. Only the weights of the linear operators within transformers blocks are quantized. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams max_model_len, tp_size = 4096, 1 model_name = "neuralmagic/Mistral-Small-24B-Instruct-2501-quantized.w4a16" tokenizer = AutoTokenizer.from_pretrained(model_name) llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) messages_list = [ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], ] prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) generated_text = [output.outputs[0].text for output in outputs] print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server ```bash $ podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/Mistral-Small-24B-Instruct-2501-quantized.w4a16 ``` ​​See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
Deploy on Red Hat Enterprise Linux AI ```bash # Download model from Red Hat Registry via docker # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-24b-instruct-2501-quantized-w4a16:1.5 ``` ```bash # Serve model via ilab ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-quantized-w4a16 --gpu 1 -- --trust-remote-code # Chat with model ilab model chat --model ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-quantized-w4a16 ``` See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
Deploy on Red Hat Openshift AI ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: Mistral-Small-24B-Instruct-2501-quantized.w4a16 # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: Mistral-Small-24B-Instruct-2501-quantized.w4a16 # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: args: - "--trust-remote-code" modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-24b-instruct-2501-quantized-w4a16:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml # Apply the InferenceService oc apply -f qwen-inferenceservice.yaml ``` ```python # Replace and below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://-predictor-default./v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "Mistral-Small-24B-Instruct-2501-quantized.w4a16", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```bash python quantize.py --model_path mistralai/Mistral-Small-24B-Instruct-2501 --quant_path "output_dir" --calib_size 1024 --dampening_frac 0.05 --observer minmax --actorder false ``` ```python from datasets import load_dataset from transformers import AutoTokenizer from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot, apply import argparse from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy def parse_actorder(value): # Interpret the input value for --actorder if value.lower() == "false": return False elif value.lower() == "group": return "group" elif value.lower() == "weight": return "weight" else: raise argparse.ArgumentTypeError("Invalid value for --actorder. Use 'group' or 'False'.") parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str) parser.add_argument('--quant_path', type=str) parser.add_argument('--num_bits', type=int, default=4) parser.add_argument('--sequential_update', type=bool, default=True) parser.add_argument('--calib_size', type=int, default=256) parser.add_argument('--dampening_frac', type=float, default=0.05) parser.add_argument('--observer', type=str, default="minmax") parser.add_argument( '--actorder', type=parse_actorder, default=False, # Default value is False help="Specify actorder as 'group' (string) or False (boolean)." ) args = parser.parse_args() model = SparseAutoModelForCausalLM.from_pretrained( args.model_path, device_map="auto", torch_dtype="auto", use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained(args.model_path) NUM_CALIBRATION_SAMPLES = args.calib_size DATASET_ID = "garage-bAInd/Open-Platypus" DATASET_SPLIT = "train" ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): concat_txt = example["instruction"] + "\n" + example["output"] return {"text": concat_txt} ds = ds.map(preprocess) def tokenize(sample): return tokenizer( sample["text"], padding=False, truncation=False, add_special_tokens=True, ) ds = ds.map(tokenize, remove_columns=ds.column_names) quant_scheme = QuantizationScheme( targets=["Linear"], weights=QuantizationArgs( num_bits=args.num_bits, type=QuantizationType.INT, symmetric=True, group_size=128, strategy=QuantizationStrategy.GROUP, observer=args.observer, actorder=args.actorder ), input_activations=None, output_activations=None, ) recipe = [ GPTQModifier( targets=["Linear"], ignore=["lm_head"], sequential_update=args.sequential_update, dampening_frac=args.dampening_frac, config_groups={"group_0": quant_scheme}, ) ] oneshot( model=model, dataset=ds, recipe=recipe, num_calibration_samples=args.calib_size, ) # Save to disk compressed. SAVE_DIR = args.quant_path model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` ## Evaluation The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: OpenLLM Leaderboard V1: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` OpenLLM Leaderboard V2: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ --apply_chat_template \ --fewshot_as_multiturn \ --tasks leaderboard \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` ### Accuracy #### OpenLLM Leaderboard V1 evaluation scores | Metric | mistralai/Mistral-Small-24B-Instruct-2501 | neuralmagic/Mistral-Small-24B-Instruct-2501-quantized.w4a16 | |-----------------------------------------|:---------------------------------:|:-------------------------------------------:| | ARC-Challenge (Acc-Norm, 25-shot) | 72.18 | 71.16 | | GSM8K (Strict-Match, 5-shot) | 90.14 | 89.69 | | HellaSwag (Acc-Norm, 10-shot) | 85.05 | 84.43 | | MMLU (Acc, 5-shot) | 80.69 | 80.00 | | TruthfulQA (MC2, 0-shot) | 65.55 | 63.92 | | Winogrande (Acc, 5-shot) | 83.11 | 82.24 | | **Average Score** | **79.45** | **78.57** | | **Recovery (%)** | **100.00** | **98.9** | #### OpenLLM Leaderboard V2 evaluation scores | Metric | mistralai/Mistral-Small-24B-Instruct-2501 | neuralmagic/Mistral-Small-24B-Instruct-2501-quantized.w4a16 | |---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:| | IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 73.27 | 74.37 | | BBH (Acc-Norm, 3-shot) | 45.18 | 45.15 | | MMLU-Pro (Acc, 5-shot) | 38.83 | 36.00 | | **Average Score** | **52.42** | **51.84** | | **Recovery (%)** | **100.00** | **98.89** | | GPQA (Acc-Norm, 0-shot) | 8.29 | 6.81 | | MUSR (Acc-Norm, 0-shot) | 7.84 | 9.46 | Results on GPQA and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy (8.29, 7.84) which doesn't provide a reliable baseline for recovery calculation.