---
library_name: vllm
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- pt
- th
- tl
- vi
base_model:
- meta-llama/Llama-4-Maverick-17B-128E-Instruct
pipeline_tag: image-text-to-text
tags:
- facebook
- meta
- pytorch
- llama
- llama4
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT4
license: other
license_name: llama4
---
# Llama-4-Maverick-17B-128E-Instruct-quantized.w4a16
## Model Overview
- **Model Architecture:** Llama4ForConditionalGeneration
- **Input:** Text / Image
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Release Date:** 06/12/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing weights of [Llama-4-Maverick-17B-128E-Instruct](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct) to INT4 data type.
This optimization reduces the number of bits used to represent weights from 16 to 4, reducing GPU memory requirements by approximately 75%.
Weight quantization also reduces disk size requirements by approximately 75%.
The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization.
## Deployment
This model can be deployed efficiently on vLLM.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Llama-4-Maverick-17B-128E-Instruct-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
Creation details
This model was created by applying a development version [llm-compressor](https://github.com/vllm-project/llm-compressor).
More details will be added as the the code is merged on main.
## Evaluation
The model was evaluated on the OpenLLM v1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
More evaluations are under way.
Evaluation details
**OpenLLM v1**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto
```
### Accuracy
| | Recovery (%) | meta-llama/Llama-4-Maverick-17B-128E-Instruct | RedHatAI/Llama-4-Maverick-17B-128E-Instruct-quantized.w4a16
(this model) |
| ---------------------------------------------- | :-----------: | :-------------------------------------------: | :-----------------------------------------------------------------: |
| ARC-Challenge
25-shot | 96.6 | 73.55 | 71.08 |
| GSM8k
5-shot | 99.7 | 93.18 | 92.87 |
| HellaSwag
10-shot | 99.6 | 87.27 | 86.95 |
| MMLU
5-shot | 99.8 | 85.98 | 85.78 |
| TruthfulQA
0-shot | 100.0 | 62.81 | 62.85 |
| WinoGrande
5-shot | 100.5 | 78.53 | 78.93 |
| **OpenLLM v1
Average Score** | **99.4** | **80.22** | **79.74** |