kylesayrs commited on
Commit
7e1d5b9
·
verified ·
1 Parent(s): 231b020

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - w4a16
4
+ - int4
5
+ - vllm
6
+ - vision
7
+ license: apache-2.0
8
+ license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
9
+ language:
10
+ - en
11
+ base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
12
+ library_name: transformers
13
+ ---
14
+
15
+ #
16
+ Llama-3.2-11B-Vision-Instruct-quantized.w4a16
17
+
18
+ ## Model Overview
19
+ - **Model Architecture:** Llama-3.2-11B-Vision-Instruct
20
+ - **Input:** Vision-Text
21
+ - **Output:** Text
22
+ - **Model Optimizations:**
23
+ - **Weight quantization:** INT4
24
+ - **Activation quantization:** FP16
25
+ - **Release Date:** 1/31/2025
26
+ - **Version:** 1.0
27
+ - **Model Developers:** Neural Magic
28
+
29
+ Quantized version of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct).
30
+
31
+ ### Model Optimizations
32
+
33
+ This model was obtained by quantizing the weights of [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) to INT4 data type, ready for inference with vLLM >= 0.5.2.
34
+
35
+ ## Deployment
36
+
37
+ ### Use with vLLM
38
+
39
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
40
+
41
+ ```python
42
+ from transformers import AutoProcessor
43
+ from vllm.assets.image import ImageAsset
44
+ from vllm import LLM, SamplingParams
45
+
46
+ # prepare model
47
+ model_id = "neuralmagic/Llama-3.2-11B-Vision-Instruct-W4A16-G128"
48
+ llm = LLM(
49
+ model=model_id,
50
+ max_model_len=4096,
51
+ max_num_seqs=16,
52
+ limit_mm_per_prompt={"image": 1},
53
+ )
54
+ processor = AutoProcessor.from_pretrained(model_id)
55
+
56
+
57
+ # prepare inputs
58
+ question = "What is the content of this image?"
59
+ messages = [
60
+ {
61
+ "role": "user",
62
+ "content": [
63
+ {"type": "image"},
64
+ {"type": "text", "text": f"{question}"},
65
+ ],
66
+ },
67
+ ]
68
+ prompt = processor.apply_chat_template(
69
+ messages, add_generation_prompt=True,tokenize=False
70
+ )
71
+ image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
72
+ inputs = {
73
+ "prompt": prompt,
74
+ "multi_modal_data": {
75
+ "image": image
76
+ },
77
+ }
78
+
79
+ # generate response
80
+ print("========== SAMPLE GENERATION ==============")
81
+ outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
82
+ print(f"PROMPT : {outputs[0].prompt}")
83
+ print(f"RESPONSE: {outputs[0].outputs[0].text}")
84
+ print("==========================================")
85
+ ```
86
+
87
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
88
+
89
+ ## Creation
90
+
91
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
92
+
93
+ ```python
94
+ import requests
95
+ import torch
96
+ from PIL import Image
97
+ from transformers import AutoProcessor
98
+
99
+ from llmcompressor.modifiers.quantization import GPTQModifier
100
+ from llmcompressor.transformers import oneshot
101
+ from llmcompressor.transformers.tracing import TraceableMllamaForConditionalGeneration
102
+
103
+ # Load model.
104
+ model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
105
+ model = TraceableMllamaForConditionalGeneration.from_pretrained(
106
+ model_id, device_map="auto", torch_dtype="auto"
107
+ )
108
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
109
+
110
+ # Oneshot arguments
111
+ DATASET_ID = "flickr30k"
112
+ DATASET_SPLIT = {"calibration": "test[:512]"}
113
+ NUM_CALIBRATION_SAMPLES = 512
114
+ MAX_SEQUENCE_LENGTH = 2048
115
+
116
+
117
+ # Define a oneshot data collator for multimodal inputs.
118
+ def data_collator(batch):
119
+ assert len(batch) == 1
120
+ return {key: torch.tensor(value) for key, value in batch[0].items()}
121
+
122
+
123
+ # Recipe
124
+ recipe = [
125
+ GPTQModifier(
126
+ targets="Linear",
127
+ scheme="W4A16",
128
+ ignore=["re:.*lm_head", "re:multi_modal_projector.*", "re:vision_model.*"],
129
+ ),
130
+ ]
131
+
132
+ # Perform oneshot
133
+ oneshot(
134
+ model=model,
135
+ tokenizer=model_id,
136
+ dataset=DATASET_ID,
137
+ splits=DATASET_SPLIT,
138
+ recipe=recipe,
139
+ max_seq_length=MAX_SEQUENCE_LENGTH,
140
+ num_calibration_samples=NUM_CALIBRATION_SAMPLES,
141
+ trust_remote_code_model=True,
142
+ data_collator=data_collator,
143
+ )
144
+ ```
145
+
146
+ ## License
147
+
148
+ License: Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement).