--- license: mit library_name: vllm base_model: - deepseek-ai/DeepSeek-R1-0528 pipeline_tag: text-generation tags: - deepseek - neuralmagic - redhat - llmcompressor - quantized - INT4 - GPTQ --- # DeepSeek-R1-0528-quantized.w4a16 ## Model Overview - **Model Architecture:** DeepseekV3ForCausalLM - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Activation quantization:** None - **Weight quantization:** INT4 - **Release Date:** 05/30/2025 - **Version:** 1.0 - **Model Developers:** Red Hat (Neural Magic) ### Model Optimizations This model was obtained by quantizing weights of [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) to INT4 data type. This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%). Weight quantization also reduces disk size requirements by approximately 50%. ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16" number_gpus = 8 sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Give me a short introduction to large language model." llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompt, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Evaluation The model was evaluated on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via [LightEval](https://github.com/huggingface/open-r1). For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds, `temperature=0.6`, `top_p=0.95` and `max_new_tokens=65536`. ### Accuracy | | Recovery (%) | deepseek/DeepSeek-R1-0528 | RedHatAI/DeepSeek-R1-0528-quantized.w4a16
(this model) | | --------------------------- | :----------: | :------------------: | :--------------------------------------------------: | | AIME 2024
pass@1 | 98.50 | 88.66 | 87.33 | | MATH-500
pass@1 | 99.88 | 97.52 | 97.40 | | GPQA Diamond
pass@1 | 101.21 | 79.65 | 80.61 | | **Reasoning
Average Score** | **99.82** | **88.61** | **88.45** |