---
license: mit
library_name: vllm
base_model:
- deepseek-ai/DeepSeek-R1-0528
pipeline_tag: text-generation
tags:
- deepseek
- neuralmagic
- redhat
- llmcompressor
- quantized
- INT4
- GPTQ
---
# DeepSeek-R1-0528-quantized.w4a16
## Model Overview
- **Model Architecture:** DeepseekV3ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** None
- **Weight quantization:** INT4
- **Release Date:** 05/30/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing weights of [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) to INT4 data type.
This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%).
Weight quantization also reduces disk size requirements by approximately 50%.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-0528-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Evaluation
The model was evaluated on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via [LightEval](https://github.com/huggingface/open-r1).
For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds, `temperature=0.6`, `top_p=0.95` and `max_new_tokens=65536`.
### Accuracy
| | Recovery (%) | deepseek/DeepSeek-R1-0528 | RedHatAI/DeepSeek-R1-0528-quantized.w4a16
(this model) |
| --------------------------- | :----------: | :------------------: | :--------------------------------------------------: |
| AIME 2024
pass@1 | 98.50 | 88.66 | 87.33 |
| MATH-500
pass@1 | 99.88 | 97.52 | 97.40 |
| GPQA Diamond
pass@1 | 101.21 | 79.65 | 80.61 |
| **Reasoning
Average Score** | **99.82** | **88.61** | **88.45** |