lbourdois commited on
Commit
ac2d9a2
·
verified ·
1 Parent(s): b0a7ddb

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +444 -430
README.md CHANGED
@@ -1,431 +1,445 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- datasets:
5
- - anthracite-org/kalo-opus-instruct-22k-no-refusal
6
- - Nopm/Opus_WritingStruct
7
- - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
8
- - Gryphe/Sonnet3.5-Charcard-Roleplay
9
- - Gryphe/ChatGPT-4o-Writing-Prompts
10
- - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
11
- - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
12
- - nothingiisreal/Reddit-Dirty-And-WritingPrompts
13
- - allura-org/Celeste-1.x-data-mixture
14
- - cognitivecomputations/dolphin-2.9.3
15
- base_model: Qwen/Qwen2.5-32B
16
- tags:
17
- - generated_from_trainer
18
- model-index:
19
- - name: EVA-Qwen2.5-32B-SFFT-v0.1
20
- results: []
21
- ---
22
-
23
- # EVA Qwen2.5-32B v0.2
24
-
25
- <p>
26
- A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.<br>
27
- It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.<br>
28
- </p>
29
-
30
- <p>Dedicated to Nev.</p>
31
-
32
- <p><b>Version notes for 0.2</b>: Basically, reprocessed the whole dataset again, due to a severe mistake in previously used pipeline, which left the data poisoned with a lot of non-unicode characters. Now, no more weird generation artifacts, and more stability. Major kudos to Cahvay for his work on fixing this critical issue.</p>
33
-
34
- <p>
35
- <p>Prompt format is ChatML.</p><br>
36
- <h3>Recommended sampler values:</h3>
37
- <ul>
38
- <li>Temperature: 1</li>
39
- <li>Min-P: 0.05</li>
40
- <li>Top-A: 0.2</li>
41
- <li>Repetition Penalty: 1.03</li>
42
- </ul>
43
-
44
- <h3>Recommended SillyTavern presets (via CalamitousFelicitousness):</h3>
45
-
46
- - [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json)
47
- - [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json)
48
- </p>
49
-
50
- <p>
51
- <br>
52
- <h3>
53
- Training data:
54
- </h3>
55
- <ul>
56
- <li>Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's <a href=https://huggingface.co/nothingiisreal/L3.1-70B-Celeste-V0.1-BF16>card</a> for details.</li>
57
- <li>Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.</li>
58
- <li>A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe</li>
59
- <li>A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe</li>
60
- <li>Synthstruct and SynthRP datasets by Epiculous</li>
61
- <li>A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.</li>
62
- </ul>
63
- <h3>
64
- Training time and hardware:
65
- </h3>
66
- <ul><li>7 hours on 8xH100 SXM, provided by <a href=https://featherless.ai/>FeatherlessAI</a></li></ul><br>
67
- </p>
68
- <p>Model was created by Kearm, Auri and Cahvay.</p>
69
- <h4>Special thanks:</h4><ul>
70
- <li><b>to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning.</b></li>
71
- <li><b>to <a href=https://featherless.ai/>FeatherlessAI</a> for generously providing 8xH100 SXM node for training of this model</b></li>
72
- <li>to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data</li>
73
- <li>and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.</li></ul>
74
-
75
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
76
- <details><summary>See axolotl config</summary>
77
-
78
- axolotl version: `0.4.1`
79
- ```yaml
80
- base_model: Qwen/Qwen2.5-32B
81
-
82
- load_in_8bit: false
83
- load_in_4bit: false
84
- strict: false
85
-
86
- plugins:
87
- - axolotl.integrations.liger.LigerPlugin
88
- liger_rope: true
89
- liger_rms_norm: true
90
- liger_swiglu: true
91
- liger_fused_linear_cross_entropy: true
92
-
93
- # plugins:
94
- # - axolotl.integrations.spectrum.SpectrumPlugin
95
-
96
- # spectrum_top_fraction: 0.5
97
- # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
98
- # spectrum_model_name: Qwen/Qwen2.5-32B
99
-
100
- datasets:
101
- - path: datasets/Celeste_Filtered_utf8fix.jsonl
102
- type: sharegpt
103
- - path: datasets/deduped_not_samantha_norefusals.jsonl
104
- type: sharegpt
105
- - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
106
- type: sharegpt
107
- - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
108
- type: sharegpt
109
- - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
110
- type: sharegpt
111
- - path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl
112
- type: sharegpt
113
- - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
114
- type: sharegpt
115
- - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
116
- type: sharegpt
117
-
118
- chat_template: chatml
119
- shuffle_merged_datasets: true
120
- val_set_size: 0.001
121
- output_dir: ./EVA-Qwen2.5-32B-SFFT-v0.1
122
-
123
- sequence_len: 10240
124
- sample_packing: true
125
- eval_sample_packing: false
126
- pad_to_sequence_len: true
127
-
128
- # adapter: qlora
129
- # lora_model_dir:
130
- # lora_r: 64
131
- # lora_alpha: 128
132
- # lora_dropout: 0.05
133
- # lora_target_linear: true
134
- # peft_use_dora: true
135
-
136
- unfrozen_parameters:
137
- - ^lm_head.weight$
138
- - ^model.embed_tokens.weight$
139
- # mlp.down_proj layers
140
- - model.layers.63.mlp.down_proj
141
- - model.layers.49.mlp.down_proj
142
- - model.layers.48.mlp.down_proj
143
- - model.layers.45.mlp.down_proj
144
- - model.layers.44.mlp.down_proj
145
- - model.layers.47.mlp.down_proj
146
- - model.layers.46.mlp.down_proj
147
- - model.layers.43.mlp.down_proj
148
- - model.layers.8.mlp.down_proj
149
- - model.layers.11.mlp.down_proj
150
- - model.layers.19.mlp.down_proj
151
- - model.layers.35.mlp.down_proj
152
- - model.layers.20.mlp.down_proj
153
- - model.layers.52.mlp.down_proj
154
- - model.layers.39.mlp.down_proj
155
- - model.layers.62.mlp.down_proj
156
- - model.layers.50.mlp.down_proj
157
- - model.layers.29.mlp.down_proj
158
- - model.layers.16.mlp.down_proj
159
- - model.layers.28.mlp.down_proj
160
- - model.layers.53.mlp.down_proj
161
- - model.layers.30.mlp.down_proj
162
- - model.layers.31.mlp.down_proj
163
- - model.layers.32.mlp.down_proj
164
- - model.layers.7.mlp.down_proj
165
- - model.layers.36.mlp.down_proj
166
- - model.layers.12.mlp.down_proj
167
- - model.layers.18.mlp.down_proj
168
- - model.layers.37.mlp.down_proj
169
- - model.layers.38.mlp.down_proj
170
- - model.layers.14.mlp.down_proj
171
- - model.layers.13.mlp.down_proj
172
- # mlp.gate_proj layers
173
- - model.layers.43.mlp.gate_proj
174
- - model.layers.61.mlp.gate_proj
175
- - model.layers.60.mlp.gate_proj
176
- - model.layers.44.mlp.gate_proj
177
- - model.layers.62.mlp.gate_proj
178
- - model.layers.28.mlp.gate_proj
179
- - model.layers.29.mlp.gate_proj
180
- - model.layers.45.mlp.gate_proj
181
- - model.layers.37.mlp.gate_proj
182
- - model.layers.35.mlp.gate_proj
183
- - model.layers.59.mlp.gate_proj
184
- - model.layers.36.mlp.gate_proj
185
- - model.layers.30.mlp.gate_proj
186
- - model.layers.48.mlp.gate_proj
187
- - model.layers.38.mlp.gate_proj
188
- - model.layers.27.mlp.gate_proj
189
- - model.layers.31.mlp.gate_proj
190
- - model.layers.34.mlp.gate_proj
191
- - model.layers.58.mlp.gate_proj
192
- - model.layers.33.mlp.gate_proj
193
- - model.layers.39.mlp.gate_proj
194
- - model.layers.26.mlp.gate_proj
195
- - model.layers.32.mlp.gate_proj
196
- - model.layers.46.mlp.gate_proj
197
- - model.layers.42.mlp.gate_proj
198
- - model.layers.49.mlp.gate_proj
199
- - model.layers.57.mlp.gate_proj
200
- - model.layers.50.mlp.gate_proj
201
- - model.layers.47.mlp.gate_proj
202
- - model.layers.56.mlp.gate_proj
203
- - model.layers.63.mlp.gate_proj
204
- - model.layers.55.mlp.gate_proj
205
- # mlp.up_proj layers
206
- - model.layers.61.mlp.up_proj
207
- - model.layers.60.mlp.up_proj
208
- - model.layers.32.mlp.up_proj
209
- - model.layers.59.mlp.up_proj
210
- - model.layers.58.mlp.up_proj
211
- - model.layers.57.mlp.up_proj
212
- - model.layers.44.mlp.up_proj
213
- - model.layers.28.mlp.up_proj
214
- - model.layers.35.mlp.up_proj
215
- - model.layers.36.mlp.up_proj
216
- - model.layers.29.mlp.up_proj
217
- - model.layers.31.mlp.up_proj
218
- - model.layers.34.mlp.up_proj
219
- - model.layers.55.mlp.up_proj
220
- - model.layers.49.mlp.up_proj
221
- - model.layers.30.mlp.up_proj
222
- - model.layers.53.mlp.up_proj
223
- - model.layers.43.mlp.up_proj
224
- - model.layers.56.mlp.up_proj
225
- - model.layers.33.mlp.up_proj
226
- - model.layers.54.mlp.up_proj
227
- - model.layers.62.mlp.up_proj
228
- - model.layers.27.mlp.up_proj
229
- - model.layers.51.mlp.up_proj
230
- - model.layers.52.mlp.up_proj
231
- - model.layers.37.mlp.up_proj
232
- - model.layers.45.mlp.up_proj
233
- - model.layers.26.mlp.up_proj
234
- - model.layers.42.mlp.up_proj
235
- - model.layers.50.mlp.up_proj
236
- - model.layers.48.mlp.up_proj
237
- - model.layers.39.mlp.up_proj
238
- # self_attn.k_proj layers
239
- - model.layers.63.self_attn.k_proj
240
- - model.layers.55.self_attn.k_proj
241
- - model.layers.60.self_attn.k_proj
242
- - model.layers.7.self_attn.k_proj
243
- - model.layers.12.self_attn.k_proj
244
- - model.layers.13.self_attn.k_proj
245
- - model.layers.57.self_attn.k_proj
246
- - model.layers.29.self_attn.k_proj
247
- - model.layers.14.self_attn.k_proj
248
- - model.layers.51.self_attn.k_proj
249
- - model.layers.53.self_attn.k_proj
250
- - model.layers.54.self_attn.k_proj
251
- - model.layers.22.self_attn.k_proj
252
- - model.layers.61.self_attn.k_proj
253
- - model.layers.18.self_attn.k_proj
254
- - model.layers.30.self_attn.k_proj
255
- - model.layers.9.self_attn.k_proj
256
- - model.layers.24.self_attn.k_proj
257
- - model.layers.23.self_attn.k_proj
258
- - model.layers.25.self_attn.k_proj
259
- - model.layers.10.self_attn.k_proj
260
- - model.layers.58.self_attn.k_proj
261
- - model.layers.56.self_attn.k_proj
262
- - model.layers.15.self_attn.k_proj
263
- - model.layers.32.self_attn.k_proj
264
- - model.layers.28.self_attn.k_proj
265
- - model.layers.8.self_attn.k_proj
266
- - model.layers.59.self_attn.k_proj
267
- - model.layers.11.self_attn.k_proj
268
- - model.layers.48.self_attn.k_proj
269
- - model.layers.16.self_attn.k_proj
270
- - model.layers.50.self_attn.k_proj
271
- # self_attn.o_proj layers
272
- - model.layers.15.self_attn.o_proj
273
- - model.layers.23.self_attn.o_proj
274
- - model.layers.31.self_attn.o_proj
275
- - model.layers.30.self_attn.o_proj
276
- - model.layers.18.self_attn.o_proj
277
- - model.layers.24.self_attn.o_proj
278
- - model.layers.17.self_attn.o_proj
279
- - model.layers.28.self_attn.o_proj
280
- - model.layers.34.self_attn.o_proj
281
- - model.layers.33.self_attn.o_proj
282
- - model.layers.25.self_attn.o_proj
283
- - model.layers.12.self_attn.o_proj
284
- - model.layers.14.self_attn.o_proj
285
- - model.layers.29.self_attn.o_proj
286
- - model.layers.16.self_attn.o_proj
287
- - model.layers.26.self_attn.o_proj
288
- - model.layers.22.self_attn.o_proj
289
- - model.layers.27.self_attn.o_proj
290
- - model.layers.35.self_attn.o_proj
291
- - model.layers.20.self_attn.o_proj
292
- - model.layers.13.self_attn.o_proj
293
- - model.layers.36.self_attn.o_proj
294
- - model.layers.19.self_attn.o_proj
295
- - model.layers.37.self_attn.o_proj
296
- - model.layers.21.self_attn.o_proj
297
- - model.layers.11.self_attn.o_proj
298
- - model.layers.54.self_attn.o_proj
299
- - model.layers.5.self_attn.o_proj
300
- - model.layers.38.self_attn.o_proj
301
- - model.layers.6.self_attn.o_proj
302
- - model.layers.8.self_attn.o_proj
303
- - model.layers.9.self_attn.o_proj
304
- # self_attn.q_proj layers
305
- - model.layers.1.self_attn.q_proj
306
- - model.layers.2.self_attn.q_proj
307
- - model.layers.3.self_attn.q_proj
308
- - model.layers.45.self_attn.q_proj
309
- - model.layers.54.self_attn.q_proj
310
- - model.layers.35.self_attn.q_proj
311
- - model.layers.48.self_attn.q_proj
312
- - model.layers.61.self_attn.q_proj
313
- - model.layers.52.self_attn.q_proj
314
- - model.layers.50.self_attn.q_proj
315
- - model.layers.60.self_attn.q_proj
316
- - model.layers.56.self_attn.q_proj
317
- - model.layers.58.self_attn.q_proj
318
- - model.layers.42.self_attn.q_proj
319
- - model.layers.59.self_attn.q_proj
320
- - model.layers.44.self_attn.q_proj
321
- - model.layers.55.self_attn.q_proj
322
- - model.layers.57.self_attn.q_proj
323
- - model.layers.41.self_attn.q_proj
324
- - model.layers.36.self_attn.q_proj
325
- - model.layers.39.self_attn.q_proj
326
- - model.layers.4.self_attn.q_proj
327
- - model.layers.43.self_attn.q_proj
328
- - model.layers.34.self_attn.q_proj
329
- - model.layers.46.self_attn.q_proj
330
- - model.layers.49.self_attn.q_proj
331
- - model.layers.40.self_attn.q_proj
332
- - model.layers.25.self_attn.q_proj
333
- - model.layers.51.self_attn.q_proj
334
- - model.layers.17.self_attn.q_proj
335
- - model.layers.37.self_attn.q_proj
336
- - model.layers.53.self_attn.q_proj
337
- # self_attn.v_proj layers
338
- - model.layers.55.self_attn.v_proj
339
- - model.layers.31.self_attn.v_proj
340
- - model.layers.47.self_attn.v_proj
341
- - model.layers.45.self_attn.v_proj
342
- - model.layers.49.self_attn.v_proj
343
- - model.layers.48.self_attn.v_proj
344
- - model.layers.15.self_attn.v_proj
345
- - model.layers.30.self_attn.v_proj
346
- - model.layers.7.self_attn.v_proj
347
- - model.layers.44.self_attn.v_proj
348
- - model.layers.29.self_attn.v_proj
349
- - model.layers.51.self_attn.v_proj
350
- - model.layers.50.self_attn.v_proj
351
- - model.layers.14.self_attn.v_proj
352
- - model.layers.54.self_attn.v_proj
353
- - model.layers.32.self_attn.v_proj
354
- - model.layers.43.self_attn.v_proj
355
- - model.layers.10.self_attn.v_proj
356
- - model.layers.46.self_attn.v_proj
357
- - model.layers.38.self_attn.v_proj
358
- - model.layers.57.self_attn.v_proj
359
- - model.layers.22.self_attn.v_proj
360
- - model.layers.39.self_attn.v_proj
361
- - model.layers.6.self_attn.v_proj
362
- - model.layers.23.self_attn.v_proj
363
- - model.layers.58.self_attn.v_proj
364
- - model.layers.53.self_attn.v_proj
365
- - model.layers.40.self_attn.v_proj
366
- - model.layers.24.self_attn.v_proj
367
- - model.layers.9.self_attn.v_proj
368
- - model.layers.25.self_attn.v_proj
369
- - model.layers.5.self_attn.v_proj
370
-
371
-
372
-
373
- wandb_project: EVA-Qwen2.5-32B-SFFT-v0.2
374
- wandb_entity:
375
- wandb_watch:
376
- wandb_name: Unit-02
377
- wandb_log_model:
378
-
379
- gradient_accumulation_steps: 8
380
- micro_batch_size: 1
381
- num_epochs: 3
382
- optimizer: paged_adamw_8bit
383
- lr_scheduler: cosine
384
- learning_rate: 0.00005
385
- max_grad_norm: 3
386
-
387
- train_on_inputs: false
388
- group_by_length: false
389
- bf16: auto
390
- fp16:
391
- tf32: false
392
-
393
- gradient_checkpointing: "unsloth"
394
- # gradient_checkpointing_kwargs:
395
- # use_reentrant: true
396
- early_stopping_patience:
397
- resume_from_checkpoint:
398
- local_rank:
399
- logging_steps: 1
400
- xformers_attention:
401
- flash_attention: true
402
-
403
- warmup_steps: 20
404
- evals_per_epoch: 4
405
- saves_per_epoch: 4
406
- save_safetensors: true
407
- hub_model_id:
408
- hub_strategy:
409
- debug:
410
- deepspeed: deepspeed_configs/zero3_bf16.json
411
- weight_decay: 0.1
412
- # fsdp:
413
- # - full_shard
414
- # - auto_wrap
415
- # fsdp_config:
416
- # fsdp_limit_all_gathers: true
417
- # fsdp_sync_module_states: false
418
- # fsdp_offload_params: true
419
- # fsdp_cpu_ram_efficient_loading: true
420
- # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
421
- # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
422
- # fsdp_activation_checkpointing: true
423
- # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT
424
- # fsdp_sharding_strategy: FULL_SHARD
425
- # fsdp_forward_prefetch: false # Added
426
- # fsdp_backward_prefetch: "BACKWARD_PRE" # Added
427
- # fsdp_backward_prefetch_limit: 1 # Added
428
- # fsdp_mixed_precision: BF16 # Added
429
- ```
430
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
  </details><br>
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - anthracite-org/kalo-opus-instruct-22k-no-refusal
6
+ - Nopm/Opus_WritingStruct
7
+ - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
8
+ - Gryphe/Sonnet3.5-Charcard-Roleplay
9
+ - Gryphe/ChatGPT-4o-Writing-Prompts
10
+ - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
11
+ - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
12
+ - nothingiisreal/Reddit-Dirty-And-WritingPrompts
13
+ - allura-org/Celeste-1.x-data-mixture
14
+ - cognitivecomputations/dolphin-2.9.3
15
+ base_model: Qwen/Qwen2.5-32B
16
+ tags:
17
+ - generated_from_trainer
18
+ language:
19
+ - zho
20
+ - eng
21
+ - fra
22
+ - spa
23
+ - por
24
+ - deu
25
+ - ita
26
+ - rus
27
+ - jpn
28
+ - kor
29
+ - vie
30
+ - tha
31
+ - ara
32
+ model-index:
33
+ - name: EVA-Qwen2.5-32B-SFFT-v0.1
34
+ results: []
35
+ ---
36
+
37
+ # EVA Qwen2.5-32B v0.2
38
+
39
+ <p>
40
+ A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.<br>
41
+ It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.<br>
42
+ </p>
43
+
44
+ <p>Dedicated to Nev.</p>
45
+
46
+ <p><b>Version notes for 0.2</b>: Basically, reprocessed the whole dataset again, due to a severe mistake in previously used pipeline, which left the data poisoned with a lot of non-unicode characters. Now, no more weird generation artifacts, and more stability. Major kudos to Cahvay for his work on fixing this critical issue.</p>
47
+
48
+ <p>
49
+ <p>Prompt format is ChatML.</p><br>
50
+ <h3>Recommended sampler values:</h3>
51
+ <ul>
52
+ <li>Temperature: 1</li>
53
+ <li>Min-P: 0.05</li>
54
+ <li>Top-A: 0.2</li>
55
+ <li>Repetition Penalty: 1.03</li>
56
+ </ul>
57
+
58
+ <h3>Recommended SillyTavern presets (via CalamitousFelicitousness):</h3>
59
+
60
+ - [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json)
61
+ - [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json)
62
+ </p>
63
+
64
+ <p>
65
+ <br>
66
+ <h3>
67
+ Training data:
68
+ </h3>
69
+ <ul>
70
+ <li>Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's <a href=https://huggingface.co/nothingiisreal/L3.1-70B-Celeste-V0.1-BF16>card</a> for details.</li>
71
+ <li>Kalomaze's Opus_Instruct_25k dataset, filtered for refusals.</li>
72
+ <li>A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe</li>
73
+ <li>A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe</li>
74
+ <li>Synthstruct and SynthRP datasets by Epiculous</li>
75
+ <li>A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.</li>
76
+ </ul>
77
+ <h3>
78
+ Training time and hardware:
79
+ </h3>
80
+ <ul><li>7 hours on 8xH100 SXM, provided by <a href=https://featherless.ai/>FeatherlessAI</a></li></ul><br>
81
+ </p>
82
+ <p>Model was created by Kearm, Auri and Cahvay.</p>
83
+ <h4>Special thanks:</h4><ul>
84
+ <li><b>to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning.</b></li>
85
+ <li><b>to <a href=https://featherless.ai/>FeatherlessAI</a> for generously providing 8xH100 SXM node for training of this model</b></li>
86
+ <li>to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data</li>
87
+ <li>and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.</li></ul>
88
+
89
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
90
+ <details><summary>See axolotl config</summary>
91
+
92
+ axolotl version: `0.4.1`
93
+ ```yaml
94
+ base_model: Qwen/Qwen2.5-32B
95
+
96
+ load_in_8bit: false
97
+ load_in_4bit: false
98
+ strict: false
99
+
100
+ plugins:
101
+ - axolotl.integrations.liger.LigerPlugin
102
+ liger_rope: true
103
+ liger_rms_norm: true
104
+ liger_swiglu: true
105
+ liger_fused_linear_cross_entropy: true
106
+
107
+ # plugins:
108
+ # - axolotl.integrations.spectrum.SpectrumPlugin
109
+
110
+ # spectrum_top_fraction: 0.5
111
+ # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror
112
+ # spectrum_model_name: Qwen/Qwen2.5-32B
113
+
114
+ datasets:
115
+ - path: datasets/Celeste_Filtered_utf8fix.jsonl
116
+ type: sharegpt
117
+ - path: datasets/deduped_not_samantha_norefusals.jsonl
118
+ type: sharegpt
119
+ - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl
120
+ type: sharegpt
121
+ - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl
122
+ type: sharegpt
123
+ - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl
124
+ type: sharegpt
125
+ - path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl
126
+ type: sharegpt
127
+ - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl
128
+ type: sharegpt
129
+ - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl
130
+ type: sharegpt
131
+
132
+ chat_template: chatml
133
+ shuffle_merged_datasets: true
134
+ val_set_size: 0.001
135
+ output_dir: ./EVA-Qwen2.5-32B-SFFT-v0.1
136
+
137
+ sequence_len: 10240
138
+ sample_packing: true
139
+ eval_sample_packing: false
140
+ pad_to_sequence_len: true
141
+
142
+ # adapter: qlora
143
+ # lora_model_dir:
144
+ # lora_r: 64
145
+ # lora_alpha: 128
146
+ # lora_dropout: 0.05
147
+ # lora_target_linear: true
148
+ # peft_use_dora: true
149
+
150
+ unfrozen_parameters:
151
+ - ^lm_head.weight$
152
+ - ^model.embed_tokens.weight$
153
+ # mlp.down_proj layers
154
+ - model.layers.63.mlp.down_proj
155
+ - model.layers.49.mlp.down_proj
156
+ - model.layers.48.mlp.down_proj
157
+ - model.layers.45.mlp.down_proj
158
+ - model.layers.44.mlp.down_proj
159
+ - model.layers.47.mlp.down_proj
160
+ - model.layers.46.mlp.down_proj
161
+ - model.layers.43.mlp.down_proj
162
+ - model.layers.8.mlp.down_proj
163
+ - model.layers.11.mlp.down_proj
164
+ - model.layers.19.mlp.down_proj
165
+ - model.layers.35.mlp.down_proj
166
+ - model.layers.20.mlp.down_proj
167
+ - model.layers.52.mlp.down_proj
168
+ - model.layers.39.mlp.down_proj
169
+ - model.layers.62.mlp.down_proj
170
+ - model.layers.50.mlp.down_proj
171
+ - model.layers.29.mlp.down_proj
172
+ - model.layers.16.mlp.down_proj
173
+ - model.layers.28.mlp.down_proj
174
+ - model.layers.53.mlp.down_proj
175
+ - model.layers.30.mlp.down_proj
176
+ - model.layers.31.mlp.down_proj
177
+ - model.layers.32.mlp.down_proj
178
+ - model.layers.7.mlp.down_proj
179
+ - model.layers.36.mlp.down_proj
180
+ - model.layers.12.mlp.down_proj
181
+ - model.layers.18.mlp.down_proj
182
+ - model.layers.37.mlp.down_proj
183
+ - model.layers.38.mlp.down_proj
184
+ - model.layers.14.mlp.down_proj
185
+ - model.layers.13.mlp.down_proj
186
+ # mlp.gate_proj layers
187
+ - model.layers.43.mlp.gate_proj
188
+ - model.layers.61.mlp.gate_proj
189
+ - model.layers.60.mlp.gate_proj
190
+ - model.layers.44.mlp.gate_proj
191
+ - model.layers.62.mlp.gate_proj
192
+ - model.layers.28.mlp.gate_proj
193
+ - model.layers.29.mlp.gate_proj
194
+ - model.layers.45.mlp.gate_proj
195
+ - model.layers.37.mlp.gate_proj
196
+ - model.layers.35.mlp.gate_proj
197
+ - model.layers.59.mlp.gate_proj
198
+ - model.layers.36.mlp.gate_proj
199
+ - model.layers.30.mlp.gate_proj
200
+ - model.layers.48.mlp.gate_proj
201
+ - model.layers.38.mlp.gate_proj
202
+ - model.layers.27.mlp.gate_proj
203
+ - model.layers.31.mlp.gate_proj
204
+ - model.layers.34.mlp.gate_proj
205
+ - model.layers.58.mlp.gate_proj
206
+ - model.layers.33.mlp.gate_proj
207
+ - model.layers.39.mlp.gate_proj
208
+ - model.layers.26.mlp.gate_proj
209
+ - model.layers.32.mlp.gate_proj
210
+ - model.layers.46.mlp.gate_proj
211
+ - model.layers.42.mlp.gate_proj
212
+ - model.layers.49.mlp.gate_proj
213
+ - model.layers.57.mlp.gate_proj
214
+ - model.layers.50.mlp.gate_proj
215
+ - model.layers.47.mlp.gate_proj
216
+ - model.layers.56.mlp.gate_proj
217
+ - model.layers.63.mlp.gate_proj
218
+ - model.layers.55.mlp.gate_proj
219
+ # mlp.up_proj layers
220
+ - model.layers.61.mlp.up_proj
221
+ - model.layers.60.mlp.up_proj
222
+ - model.layers.32.mlp.up_proj
223
+ - model.layers.59.mlp.up_proj
224
+ - model.layers.58.mlp.up_proj
225
+ - model.layers.57.mlp.up_proj
226
+ - model.layers.44.mlp.up_proj
227
+ - model.layers.28.mlp.up_proj
228
+ - model.layers.35.mlp.up_proj
229
+ - model.layers.36.mlp.up_proj
230
+ - model.layers.29.mlp.up_proj
231
+ - model.layers.31.mlp.up_proj
232
+ - model.layers.34.mlp.up_proj
233
+ - model.layers.55.mlp.up_proj
234
+ - model.layers.49.mlp.up_proj
235
+ - model.layers.30.mlp.up_proj
236
+ - model.layers.53.mlp.up_proj
237
+ - model.layers.43.mlp.up_proj
238
+ - model.layers.56.mlp.up_proj
239
+ - model.layers.33.mlp.up_proj
240
+ - model.layers.54.mlp.up_proj
241
+ - model.layers.62.mlp.up_proj
242
+ - model.layers.27.mlp.up_proj
243
+ - model.layers.51.mlp.up_proj
244
+ - model.layers.52.mlp.up_proj
245
+ - model.layers.37.mlp.up_proj
246
+ - model.layers.45.mlp.up_proj
247
+ - model.layers.26.mlp.up_proj
248
+ - model.layers.42.mlp.up_proj
249
+ - model.layers.50.mlp.up_proj
250
+ - model.layers.48.mlp.up_proj
251
+ - model.layers.39.mlp.up_proj
252
+ # self_attn.k_proj layers
253
+ - model.layers.63.self_attn.k_proj
254
+ - model.layers.55.self_attn.k_proj
255
+ - model.layers.60.self_attn.k_proj
256
+ - model.layers.7.self_attn.k_proj
257
+ - model.layers.12.self_attn.k_proj
258
+ - model.layers.13.self_attn.k_proj
259
+ - model.layers.57.self_attn.k_proj
260
+ - model.layers.29.self_attn.k_proj
261
+ - model.layers.14.self_attn.k_proj
262
+ - model.layers.51.self_attn.k_proj
263
+ - model.layers.53.self_attn.k_proj
264
+ - model.layers.54.self_attn.k_proj
265
+ - model.layers.22.self_attn.k_proj
266
+ - model.layers.61.self_attn.k_proj
267
+ - model.layers.18.self_attn.k_proj
268
+ - model.layers.30.self_attn.k_proj
269
+ - model.layers.9.self_attn.k_proj
270
+ - model.layers.24.self_attn.k_proj
271
+ - model.layers.23.self_attn.k_proj
272
+ - model.layers.25.self_attn.k_proj
273
+ - model.layers.10.self_attn.k_proj
274
+ - model.layers.58.self_attn.k_proj
275
+ - model.layers.56.self_attn.k_proj
276
+ - model.layers.15.self_attn.k_proj
277
+ - model.layers.32.self_attn.k_proj
278
+ - model.layers.28.self_attn.k_proj
279
+ - model.layers.8.self_attn.k_proj
280
+ - model.layers.59.self_attn.k_proj
281
+ - model.layers.11.self_attn.k_proj
282
+ - model.layers.48.self_attn.k_proj
283
+ - model.layers.16.self_attn.k_proj
284
+ - model.layers.50.self_attn.k_proj
285
+ # self_attn.o_proj layers
286
+ - model.layers.15.self_attn.o_proj
287
+ - model.layers.23.self_attn.o_proj
288
+ - model.layers.31.self_attn.o_proj
289
+ - model.layers.30.self_attn.o_proj
290
+ - model.layers.18.self_attn.o_proj
291
+ - model.layers.24.self_attn.o_proj
292
+ - model.layers.17.self_attn.o_proj
293
+ - model.layers.28.self_attn.o_proj
294
+ - model.layers.34.self_attn.o_proj
295
+ - model.layers.33.self_attn.o_proj
296
+ - model.layers.25.self_attn.o_proj
297
+ - model.layers.12.self_attn.o_proj
298
+ - model.layers.14.self_attn.o_proj
299
+ - model.layers.29.self_attn.o_proj
300
+ - model.layers.16.self_attn.o_proj
301
+ - model.layers.26.self_attn.o_proj
302
+ - model.layers.22.self_attn.o_proj
303
+ - model.layers.27.self_attn.o_proj
304
+ - model.layers.35.self_attn.o_proj
305
+ - model.layers.20.self_attn.o_proj
306
+ - model.layers.13.self_attn.o_proj
307
+ - model.layers.36.self_attn.o_proj
308
+ - model.layers.19.self_attn.o_proj
309
+ - model.layers.37.self_attn.o_proj
310
+ - model.layers.21.self_attn.o_proj
311
+ - model.layers.11.self_attn.o_proj
312
+ - model.layers.54.self_attn.o_proj
313
+ - model.layers.5.self_attn.o_proj
314
+ - model.layers.38.self_attn.o_proj
315
+ - model.layers.6.self_attn.o_proj
316
+ - model.layers.8.self_attn.o_proj
317
+ - model.layers.9.self_attn.o_proj
318
+ # self_attn.q_proj layers
319
+ - model.layers.1.self_attn.q_proj
320
+ - model.layers.2.self_attn.q_proj
321
+ - model.layers.3.self_attn.q_proj
322
+ - model.layers.45.self_attn.q_proj
323
+ - model.layers.54.self_attn.q_proj
324
+ - model.layers.35.self_attn.q_proj
325
+ - model.layers.48.self_attn.q_proj
326
+ - model.layers.61.self_attn.q_proj
327
+ - model.layers.52.self_attn.q_proj
328
+ - model.layers.50.self_attn.q_proj
329
+ - model.layers.60.self_attn.q_proj
330
+ - model.layers.56.self_attn.q_proj
331
+ - model.layers.58.self_attn.q_proj
332
+ - model.layers.42.self_attn.q_proj
333
+ - model.layers.59.self_attn.q_proj
334
+ - model.layers.44.self_attn.q_proj
335
+ - model.layers.55.self_attn.q_proj
336
+ - model.layers.57.self_attn.q_proj
337
+ - model.layers.41.self_attn.q_proj
338
+ - model.layers.36.self_attn.q_proj
339
+ - model.layers.39.self_attn.q_proj
340
+ - model.layers.4.self_attn.q_proj
341
+ - model.layers.43.self_attn.q_proj
342
+ - model.layers.34.self_attn.q_proj
343
+ - model.layers.46.self_attn.q_proj
344
+ - model.layers.49.self_attn.q_proj
345
+ - model.layers.40.self_attn.q_proj
346
+ - model.layers.25.self_attn.q_proj
347
+ - model.layers.51.self_attn.q_proj
348
+ - model.layers.17.self_attn.q_proj
349
+ - model.layers.37.self_attn.q_proj
350
+ - model.layers.53.self_attn.q_proj
351
+ # self_attn.v_proj layers
352
+ - model.layers.55.self_attn.v_proj
353
+ - model.layers.31.self_attn.v_proj
354
+ - model.layers.47.self_attn.v_proj
355
+ - model.layers.45.self_attn.v_proj
356
+ - model.layers.49.self_attn.v_proj
357
+ - model.layers.48.self_attn.v_proj
358
+ - model.layers.15.self_attn.v_proj
359
+ - model.layers.30.self_attn.v_proj
360
+ - model.layers.7.self_attn.v_proj
361
+ - model.layers.44.self_attn.v_proj
362
+ - model.layers.29.self_attn.v_proj
363
+ - model.layers.51.self_attn.v_proj
364
+ - model.layers.50.self_attn.v_proj
365
+ - model.layers.14.self_attn.v_proj
366
+ - model.layers.54.self_attn.v_proj
367
+ - model.layers.32.self_attn.v_proj
368
+ - model.layers.43.self_attn.v_proj
369
+ - model.layers.10.self_attn.v_proj
370
+ - model.layers.46.self_attn.v_proj
371
+ - model.layers.38.self_attn.v_proj
372
+ - model.layers.57.self_attn.v_proj
373
+ - model.layers.22.self_attn.v_proj
374
+ - model.layers.39.self_attn.v_proj
375
+ - model.layers.6.self_attn.v_proj
376
+ - model.layers.23.self_attn.v_proj
377
+ - model.layers.58.self_attn.v_proj
378
+ - model.layers.53.self_attn.v_proj
379
+ - model.layers.40.self_attn.v_proj
380
+ - model.layers.24.self_attn.v_proj
381
+ - model.layers.9.self_attn.v_proj
382
+ - model.layers.25.self_attn.v_proj
383
+ - model.layers.5.self_attn.v_proj
384
+
385
+
386
+
387
+ wandb_project: EVA-Qwen2.5-32B-SFFT-v0.2
388
+ wandb_entity:
389
+ wandb_watch:
390
+ wandb_name: Unit-02
391
+ wandb_log_model:
392
+
393
+ gradient_accumulation_steps: 8
394
+ micro_batch_size: 1
395
+ num_epochs: 3
396
+ optimizer: paged_adamw_8bit
397
+ lr_scheduler: cosine
398
+ learning_rate: 0.00005
399
+ max_grad_norm: 3
400
+
401
+ train_on_inputs: false
402
+ group_by_length: false
403
+ bf16: auto
404
+ fp16:
405
+ tf32: false
406
+
407
+ gradient_checkpointing: "unsloth"
408
+ # gradient_checkpointing_kwargs:
409
+ # use_reentrant: true
410
+ early_stopping_patience:
411
+ resume_from_checkpoint:
412
+ local_rank:
413
+ logging_steps: 1
414
+ xformers_attention:
415
+ flash_attention: true
416
+
417
+ warmup_steps: 20
418
+ evals_per_epoch: 4
419
+ saves_per_epoch: 4
420
+ save_safetensors: true
421
+ hub_model_id:
422
+ hub_strategy:
423
+ debug:
424
+ deepspeed: deepspeed_configs/zero3_bf16.json
425
+ weight_decay: 0.1
426
+ # fsdp:
427
+ # - full_shard
428
+ # - auto_wrap
429
+ # fsdp_config:
430
+ # fsdp_limit_all_gathers: true
431
+ # fsdp_sync_module_states: false
432
+ # fsdp_offload_params: true
433
+ # fsdp_cpu_ram_efficient_loading: true
434
+ # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
435
+ # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
436
+ # fsdp_activation_checkpointing: true
437
+ # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT
438
+ # fsdp_sharding_strategy: FULL_SHARD
439
+ # fsdp_forward_prefetch: false # Added
440
+ # fsdp_backward_prefetch: "BACKWARD_PRE" # Added
441
+ # fsdp_backward_prefetch_limit: 1 # Added
442
+ # fsdp_mixed_precision: BF16 # Added
443
+ ```
444
+
445
  </details><br>