--- license: apache-2.0 datasets: - Anthropic/hh-rlhf language: - en pipeline_tag: text-generation --- # GPT-2 Medium SFT and DPO on Anthropic-hh Dataset This repository GPT-2 Medium model instruct tuned first on the Anthropic-hh dataset and then further aligned on the same dataset with DPO. ## Model Information - **Model Name:** RaushanTurganbay/GPT2_sft_and_dpo_tuned - **Base Model:** GPT-2 Medium - **Training Data:** Anthropic-hh dataset - **Fine-Tuning Approach:** Direct Preference Optiization (DPO) ## How to Use ```python import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer, StoppingCriteria, StoppingCriteriaList tokenizer_dpo = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned") model_dpo = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_sft_and_dpo_tuned") class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = [stop.to("cuda") for stop in stops] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False def stopping_criteria(tokenizer, stop_words): stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) return stopping_criteria # Generate responses stopping = stopping_criteria(tokenizer, ["\n\nHuman:"]) prompt = "\n\nHuman: {your_instruction}\n\nAssistant:" inputs_dpo = tokenizer_dpo(prompt, return_tensors="pt") outputs_dpo = model_dpo.generate(**inputs_dpo, stopping_criteria=stopping, max_length=150) print("Model Response:", tokenizer_dpo.batch_decode(outputs_dpo)) ```