---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
- visual emb-gam
---
# Model description
This is a LogisticRegressionCV model trained on averages of patch embeddings from the Imagenette dataset. This forms the GAM of an [Emb-GAM](https://arxiv.org/abs/2209.11799) extended to images. Patch embeddings are meant to be extracted with the [`Ramos-Ramos/dino-resnet-50` DINO checkpoint](https://huggingface.co/Ramos-Ramos/dino-resnet-50).
## Intended uses & limitations
This model is not intended to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|-------------------|-----------------------------------------------------------|
| Cs | 10 |
| class_weight | |
| cv | StratifiedKFold(n_splits=5, random_state=1, shuffle=True) |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1.0 |
| l1_ratios | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | 1 |
| refit | False |
| scoring | |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)Please rerun this cell to show the HTML repr or trust the notebook.
LogisticRegressionCV(cv=StratifiedKFold(n_splits=5, random_state=1, shuffle=True),random_state=1, refit=False)