--- library_name: transformers license: cc-by-sa-4.0 base_model: cl-tohoku/bert-base-japanese-whole-word-masking tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-whole-word-masking](https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2071 - Accuracy: 0.7405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0935 | 200 | 0.2734 | 0.5675 | | No log | 0.1871 | 400 | 0.2632 | 0.5931 | | 0.3013 | 0.2806 | 600 | 0.2381 | 0.6531 | | 0.3013 | 0.3742 | 800 | 0.2324 | 0.6814 | | 0.2601 | 0.4677 | 1000 | 0.2241 | 0.7087 | | 0.2601 | 0.5613 | 1200 | 0.2163 | 0.7229 | | 0.2601 | 0.6548 | 1400 | 0.2173 | 0.7299 | | 0.2511 | 0.7484 | 1600 | 0.2115 | 0.7343 | | 0.2511 | 0.8419 | 1800 | 0.2073 | 0.7387 | | 0.2369 | 0.9355 | 2000 | 0.2071 | 0.7405 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0