File size: 3,229 Bytes
76b6a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---

library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-finetuned-cppe-5-10k-steps
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-finetuned-cppe-5-10k-steps

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0867
- Map: 0.0493
- Map 50: 0.1064
- Map 75: 0.0379
- Map Small: 0.0072
- Map Medium: 0.0304
- Map Large: 0.0574
- Mar 1: 0.0805
- Mar 10: 0.1667
- Mar 100: 0.2069
- Mar Small: 0.073
- Mar Medium: 0.1572
- Mar Large: 0.2325
- Map Coverall: 0.1978
- Mar 100 Coverall: 0.5874
- Map Face Shield: 0.0
- Mar 100 Face Shield: 0.0
- Map Gloves: 0.0253
- Mar 100 Gloves: 0.204
- Map Goggles: 0.0
- Mar 100 Goggles: 0.0
- Map Mask: 0.0236
- Mar 100 Mask: 0.2431

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 4

- eval_batch_size: 8

- seed: 1337

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- num_epochs: 2.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| 2.5499        | 1.0   | 213  | 2.3248          | 0.0367 | 0.0798 | 0.0325 | 0.0018    | 0.0114     | 0.0417    | 0.0555 | 0.1278 | 0.1648  | 0.0416    | 0.1044     | 0.2026    | 0.1697       | 0.5104           | 0.0             | 0.0                 | 0.0078     | 0.1813         | 0.0         | 0.0             | 0.0058   | 0.1324       |
| 2.1119        | 2.0   | 426  | 2.0867          | 0.0493 | 0.1064 | 0.0379 | 0.0072    | 0.0304     | 0.0574    | 0.0805 | 0.1667 | 0.2069  | 0.073     | 0.1572     | 0.2325    | 0.1978       | 0.5874           | 0.0             | 0.0                 | 0.0253     | 0.204          | 0.0         | 0.0             | 0.0236   | 0.2431       |


### Framework versions

- Transformers 4.52.0.dev0
- Pytorch 2.7.0+cu118
- Datasets 3.6.0
- Tokenizers 0.21.1