Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,7 @@ base_model:
|
|
4 |
---
|
5 |
|
6 |
## Usage
|
|
|
7 |
|
8 |
Here's how to load and use the quantized model:
|
9 |
|
@@ -47,4 +48,86 @@ generations = [
|
|
47 |
for p, g in zip(input_ids, output.sequences)
|
48 |
]
|
49 |
|
50 |
-
print(generations[0].split(tokenizer.eos_token)[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
## Usage
|
7 |
+
#Single Chat
|
8 |
|
9 |
Here's how to load and use the quantized model:
|
10 |
|
|
|
48 |
for p, g in zip(input_ids, output.sequences)
|
49 |
]
|
50 |
|
51 |
+
print(generations[0].split(tokenizer.eos_token)[0])
|
52 |
+
```
|
53 |
+
|
54 |
+
#Multi-round Chat
|
55 |
+
```python
|
56 |
+
from transformers import AutoModel, AutoTokenizer
|
57 |
+
|
58 |
+
def initialize_model():
|
59 |
+
model_path = "Rainnighttram/Dream-v0-Instruct-7B-4bit"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
61 |
+
model = AutoModel.from_pretrained(
|
62 |
+
model_path,
|
63 |
+
device_map="auto",
|
64 |
+
trust_remote_code=True
|
65 |
+
)
|
66 |
+
model = model.to("cuda").eval()
|
67 |
+
return model, tokenizer
|
68 |
+
|
69 |
+
def generate_response(model, tokenizer, messages):
|
70 |
+
inputs = tokenizer.apply_chat_template(
|
71 |
+
messages,
|
72 |
+
return_tensors="pt",
|
73 |
+
return_dict=True,
|
74 |
+
add_generation_prompt=True
|
75 |
+
)
|
76 |
+
|
77 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
78 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
79 |
+
|
80 |
+
output = model.diffusion_generate(
|
81 |
+
input_ids,
|
82 |
+
attention_mask=attention_mask,
|
83 |
+
max_new_tokens=512,
|
84 |
+
output_history=True,
|
85 |
+
return_dict_in_generate=True,
|
86 |
+
steps=512,
|
87 |
+
temperature=0.2,
|
88 |
+
top_p=0.95,
|
89 |
+
alg="entropy",
|
90 |
+
alg_temp=0.,
|
91 |
+
)
|
92 |
+
|
93 |
+
generations = [
|
94 |
+
tokenizer.decode(g[len(p):].tolist())
|
95 |
+
for p, g in zip(input_ids, output.sequences)
|
96 |
+
]
|
97 |
+
|
98 |
+
return generations[0].split(tokenizer.eos_token)[0]
|
99 |
+
|
100 |
+
def main():
|
101 |
+
# Initialize the model and tokenizer
|
102 |
+
print("Initializing model and tokenizer...")
|
103 |
+
model, tokenizer = initialize_model()
|
104 |
+
|
105 |
+
# Store conversation history
|
106 |
+
messages = []
|
107 |
+
|
108 |
+
print("Chat initialized. Type 'quit' to exit.")
|
109 |
+
print("-" * 50)
|
110 |
+
|
111 |
+
while True:
|
112 |
+
# Get user input
|
113 |
+
user_input = input("\nYou: ").strip()
|
114 |
+
|
115 |
+
# Check if user wants to quit
|
116 |
+
if user_input.lower() == 'quit':
|
117 |
+
print("\nEnding conversation. Goodbye!")
|
118 |
+
break
|
119 |
+
|
120 |
+
# Add user message to conversation history
|
121 |
+
messages.append({"role": "user", "content": user_input})
|
122 |
+
|
123 |
+
# Generate response
|
124 |
+
print("\nAssistant: ", end="")
|
125 |
+
response = generate_response(model, tokenizer, messages)
|
126 |
+
print(response)
|
127 |
+
|
128 |
+
# Add assistant's response to conversation history
|
129 |
+
messages.append({"role": "assistant", "content": response})
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
main()
|
133 |
+
```
|