RabotniKuma commited on
Commit
fc96ee6
·
verified ·
1 Parent(s): f8f72e0

Initial commit: Upload pretrained LLM

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 48,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 48,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.2",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151646,
4
+ "do_sample": true,
5
+ "eos_token_id": 151643,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.48.2"
9
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step40
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26fa8df4641fe5c9d6f9eb5fb513a65c005a43119d5457d77deecc3b469ac0f
3
+ size 4986211280
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd4d5d600740e52e31918a637b85c76110edba3a01b258148851e11abd42ca8
3
+ size 4954847344
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db1e42537aa96b2f75ad63e65d30eb73d663910238e4adea7622d3a02d3aea3
3
+ size 4954847392
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41a6882248ab522d7c6d89d92dd4664dcdbd1522281851685787dcaf11c1fc7c
3
+ size 4954847392
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f5b7a2d4a83452f891e66f1b323324a6f9da548d3b3a41191dc4b8490cadc36
3
+ size 4954847392
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38218a2d6aab96ecb44e6e66296cbf325c3625b573a457b3c132ea039532120f
3
+ size 4734533160
model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
3
+ size 11422778
tokenizer_config.json ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|end▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|User|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": false
21
+ },
22
+ "151645": {
23
+ "content": "<|Assistant|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "151646": {
31
+ "content": "<|begin▁of▁sentence|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|EOT|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "151648": {
47
+ "content": "<think>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "151649": {
55
+ "content": "</think>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ }
182
+ },
183
+ "bos_token": "<|begin▁of▁sentence|>",
184
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
185
+ "clean_up_tokenization_spaces": false,
186
+ "eos_token": "<|end▁of▁sentence|>",
187
+ "extra_special_tokens": {},
188
+ "legacy": true,
189
+ "model_max_length": 16384,
190
+ "pad_token": "<|end▁of▁sentence|>",
191
+ "padding_side": "left",
192
+ "sp_model_kwargs": {},
193
+ "tokenizer_class": "LlamaTokenizer",
194
+ "unk_token": null,
195
+ "use_default_system_prompt": false
196
+ }
trainer_state.json ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.39603960396039606,
5
+ "eval_steps": 500,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 9300.9375,
14
+ "epoch": 0.009900990099009901,
15
+ "grad_norm": 0.2749840021133423,
16
+ "kl": 0.0,
17
+ "learning_rate": 3.999032564583976e-06,
18
+ "loss": 0.009333692491054535,
19
+ "max_completion_length": 14084.125,
20
+ "min_completion_length": 5729.875,
21
+ "num_updates": 1,
22
+ "rewards": 1.173762883991003,
23
+ "rewards/cosine_scaled_reward": 0.27115931920707226,
24
+ "rewards/format_reward2": 0.8515625,
25
+ "rewards/len_reward": 0.051041055703535676,
26
+ "rewards_std": 0.5518537946045399,
27
+ "step": 1
28
+ },
29
+ {
30
+ "clip_ratio": 0.0,
31
+ "completion_length": 9752.296875,
32
+ "epoch": 0.019801980198019802,
33
+ "grad_norm": 0.23711691796779633,
34
+ "kl": 0.0007762908935546875,
35
+ "learning_rate": 3.996131194267188e-06,
36
+ "loss": 0.016636773943901062,
37
+ "max_completion_length": 14506.25,
38
+ "min_completion_length": 3615.875,
39
+ "num_updates": 2,
40
+ "rewards": 1.011244721710682,
41
+ "rewards/cosine_scaled_reward": 0.1618131911382079,
42
+ "rewards/format_reward2": 0.8203125,
43
+ "rewards/len_reward": 0.02911903988569975,
44
+ "rewards_std": 0.6834513954818249,
45
+ "step": 2
46
+ },
47
+ {
48
+ "clip_ratio": 0.0,
49
+ "completion_length": 10513.359375,
50
+ "epoch": 0.0297029702970297,
51
+ "grad_norm": 0.26973867416381836,
52
+ "kl": 0.0009961128234863281,
53
+ "learning_rate": 3.9912986959380376e-06,
54
+ "loss": -0.002310425043106079,
55
+ "max_completion_length": 14084.875,
56
+ "min_completion_length": 5952.75,
57
+ "num_updates": 3,
58
+ "rewards": 0.8836403228342533,
59
+ "rewards/cosine_scaled_reward": 0.06623293040320277,
60
+ "rewards/format_reward2": 0.84375,
61
+ "rewards/len_reward": -0.026342609897255898,
62
+ "rewards_std": 0.590987540781498,
63
+ "step": 3
64
+ },
65
+ {
66
+ "clip_ratio": 0.0,
67
+ "completion_length": 10638.6484375,
68
+ "epoch": 0.039603960396039604,
69
+ "grad_norm": 0.3450890779495239,
70
+ "kl": 0.0011034011840820312,
71
+ "learning_rate": 3.9845397447265526e-06,
72
+ "loss": 2.3186206817626953e-05,
73
+ "max_completion_length": 15636.125,
74
+ "min_completion_length": 6815.75,
75
+ "num_updates": 4,
76
+ "rewards": 0.8896834207698703,
77
+ "rewards/cosine_scaled_reward": 0.17461357091087848,
78
+ "rewards/format_reward2": 0.7109375,
79
+ "rewards/len_reward": 0.004132358357310295,
80
+ "rewards_std": 0.6534126400947571,
81
+ "step": 4
82
+ },
83
+ {
84
+ "clip_ratio": 0.0,
85
+ "completion_length": 9484.03125,
86
+ "epoch": 0.04950495049504951,
87
+ "grad_norm": 0.245803564786911,
88
+ "kl": 0.0010962486267089844,
89
+ "learning_rate": 3.975860879481513e-06,
90
+ "loss": -0.025934472680091858,
91
+ "max_completion_length": 14890.25,
92
+ "min_completion_length": 5349.375,
93
+ "num_updates": 5,
94
+ "rewards": 0.9708382207900286,
95
+ "rewards/cosine_scaled_reward": 0.10498641454614699,
96
+ "rewards/format_reward2": 0.859375,
97
+ "rewards/len_reward": 0.0064767999574542046,
98
+ "rewards_std": 0.655558355152607,
99
+ "step": 5
100
+ },
101
+ {
102
+ "clip_ratio": 0.0,
103
+ "completion_length": 9448.5859375,
104
+ "epoch": 0.0594059405940594,
105
+ "grad_norm": 0.24996301531791687,
106
+ "kl": 0.0013685226440429688,
107
+ "learning_rate": 3.965270496444528e-06,
108
+ "loss": 0.005861759185791016,
109
+ "max_completion_length": 15323.625,
110
+ "min_completion_length": 3290.125,
111
+ "num_updates": 6,
112
+ "rewards": 0.9613782716915011,
113
+ "rewards/cosine_scaled_reward": 0.2207801272161305,
114
+ "rewards/format_reward2": 0.7734375,
115
+ "rewards/len_reward": -0.03283937182277441,
116
+ "rewards_std": 0.8270582258701324,
117
+ "step": 6
118
+ },
119
+ {
120
+ "clip_ratio": 0.0,
121
+ "completion_length": 9011.703125,
122
+ "epoch": 0.06930693069306931,
123
+ "grad_norm": 0.24825839698314667,
124
+ "kl": 0.0017271041870117188,
125
+ "learning_rate": 3.952778841127214e-06,
126
+ "loss": -0.010295629501342773,
127
+ "max_completion_length": 12310.875,
128
+ "min_completion_length": 4909.25,
129
+ "num_updates": 7,
130
+ "rewards": 1.1428990792483091,
131
+ "rewards/cosine_scaled_reward": 0.24160153639968485,
132
+ "rewards/format_reward2": 0.8515625,
133
+ "rewards/len_reward": 0.04973505577072501,
134
+ "rewards_std": 0.5509255714714527,
135
+ "step": 7
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 11187.453125,
140
+ "epoch": 0.07920792079207921,
141
+ "grad_norm": 0.2318185567855835,
142
+ "kl": 0.0022907257080078125,
143
+ "learning_rate": 3.938397998399332e-06,
144
+ "loss": 0.007296696305274963,
145
+ "max_completion_length": 14553.875,
146
+ "min_completion_length": 4561.375,
147
+ "num_updates": 8,
148
+ "rewards": 0.8727323254570365,
149
+ "rewards/cosine_scaled_reward": 0.09352816140744835,
150
+ "rewards/format_reward2": 0.796875,
151
+ "rewards/len_reward": -0.01767082791775465,
152
+ "rewards_std": 0.6038715615868568,
153
+ "step": 8
154
+ },
155
+ {
156
+ "clip_ratio": 0.0,
157
+ "completion_length": 10907.1484375,
158
+ "epoch": 0.0891089108910891,
159
+ "grad_norm": 0.23230598866939545,
160
+ "kl": 0.002445220947265625,
161
+ "learning_rate": 3.922141880797449e-06,
162
+ "loss": 0.016454651951789856,
163
+ "max_completion_length": 15823.125,
164
+ "min_completion_length": 4670.375,
165
+ "num_updates": 9,
166
+ "rewards": 0.8584917988628149,
167
+ "rewards/cosine_scaled_reward": 0.12224693153984845,
168
+ "rewards/format_reward2": 0.7421875,
169
+ "rewards/len_reward": -0.0059426589868962765,
170
+ "rewards_std": 0.7407274544239044,
171
+ "step": 9
172
+ },
173
+ {
174
+ "clip_ratio": 0.0,
175
+ "completion_length": 10617.234375,
176
+ "epoch": 0.09900990099009901,
177
+ "grad_norm": 0.3195263147354126,
178
+ "kl": 0.0034656524658203125,
179
+ "learning_rate": 3.90402621506546e-06,
180
+ "loss": 0.022236675024032593,
181
+ "max_completion_length": 14234.125,
182
+ "min_completion_length": 6616.625,
183
+ "num_updates": 10,
184
+ "rewards": 0.9227555003017187,
185
+ "rewards/cosine_scaled_reward": 0.16829395852982998,
186
+ "rewards/format_reward2": 0.765625,
187
+ "rewards/len_reward": -0.011163473129272461,
188
+ "rewards_std": 0.5515045262873173,
189
+ "step": 10
190
+ },
191
+ {
192
+ "clip_ratio": 0.0,
193
+ "completion_length": 11003.5703125,
194
+ "epoch": 0.10891089108910891,
195
+ "grad_norm": 0.22265592217445374,
196
+ "kl": 0.0044879913330078125,
197
+ "learning_rate": 3.884068526939978e-06,
198
+ "loss": -0.013431079685688019,
199
+ "max_completion_length": 14716.25,
200
+ "min_completion_length": 5951.375,
201
+ "num_updates": 11,
202
+ "rewards": 0.8861873494461179,
203
+ "rewards/cosine_scaled_reward": 0.16878368379548192,
204
+ "rewards/format_reward2": 0.765625,
205
+ "rewards/len_reward": -0.04822135902941227,
206
+ "rewards_std": 0.5935308411717415,
207
+ "step": 11
208
+ },
209
+ {
210
+ "clip_ratio": 0.0,
211
+ "completion_length": 7835.3984375,
212
+ "epoch": 0.1188118811881188,
213
+ "grad_norm": 0.3398093581199646,
214
+ "kl": 0.0051021575927734375,
215
+ "learning_rate": 3.862288124195319e-06,
216
+ "loss": -0.013615414500236511,
217
+ "max_completion_length": 13709.5,
218
+ "min_completion_length": 2604.5,
219
+ "num_updates": 12,
220
+ "rewards": 1.274961642920971,
221
+ "rewards/cosine_scaled_reward": 0.32682749163359404,
222
+ "rewards/format_reward2": 0.890625,
223
+ "rewards/len_reward": 0.0575091321952641,
224
+ "rewards_std": 0.7341729030013084,
225
+ "step": 12
226
+ },
227
+ {
228
+ "clip_ratio": 0.0,
229
+ "completion_length": 9435.609375,
230
+ "epoch": 0.12871287128712872,
231
+ "grad_norm": 0.2820684313774109,
232
+ "kl": 0.006267547607421875,
233
+ "learning_rate": 3.8387060779644725e-06,
234
+ "loss": 0.015070796012878418,
235
+ "max_completion_length": 13926.75,
236
+ "min_completion_length": 3093.375,
237
+ "num_updates": 13,
238
+ "rewards": 0.9852710571140051,
239
+ "rewards/cosine_scaled_reward": 0.22535304143093526,
240
+ "rewards/format_reward2": 0.7578125,
241
+ "rewards/len_reward": 0.0021055126562714577,
242
+ "rewards_std": 0.7060699462890625,
243
+ "step": 13
244
+ },
245
+ {
246
+ "clip_ratio": 0.0,
247
+ "completion_length": 6023.7421875,
248
+ "epoch": 0.13861386138613863,
249
+ "grad_norm": 0.3811286985874176,
250
+ "kl": 0.006252288818359375,
251
+ "learning_rate": 3.8133452023541447e-06,
252
+ "loss": 0.032392144203186035,
253
+ "max_completion_length": 15730.75,
254
+ "min_completion_length": 1983.375,
255
+ "num_updates": 14,
256
+ "rewards": 1.5124556943774223,
257
+ "rewards/cosine_scaled_reward": 0.5594989098608494,
258
+ "rewards/format_reward2": 0.875,
259
+ "rewards/len_reward": 0.07795678498223424,
260
+ "rewards_std": 0.7117869555950165,
261
+ "step": 14
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 9897.4609375,
266
+ "epoch": 0.1485148514851485,
267
+ "grad_norm": 0.2323319911956787,
268
+ "kl": 0.006938934326171875,
269
+ "learning_rate": 3.786230032373583e-06,
270
+ "loss": -0.02542346715927124,
271
+ "max_completion_length": 14731.125,
272
+ "min_completion_length": 4343.625,
273
+ "num_updates": 15,
274
+ "rewards": 1.046268306672573,
275
+ "rewards/cosine_scaled_reward": 0.24649553978815675,
276
+ "rewards/format_reward2": 0.7890625,
277
+ "rewards/len_reward": 0.010710292495787144,
278
+ "rewards_std": 0.6413916498422623,
279
+ "step": 15
280
+ },
281
+ {
282
+ "clip_ratio": 0.0,
283
+ "completion_length": 8641.328125,
284
+ "epoch": 0.15841584158415842,
285
+ "grad_norm": 0.2797869145870209,
286
+ "kl": 0.009868621826171875,
287
+ "learning_rate": 3.7573868001985375e-06,
288
+ "loss": 0.00245087593793869,
289
+ "max_completion_length": 14046.0,
290
+ "min_completion_length": 2590.0,
291
+ "num_updates": 16,
292
+ "rewards": 1.0253378190100193,
293
+ "rewards/cosine_scaled_reward": 0.18167185690253973,
294
+ "rewards/format_reward2": 0.8515625,
295
+ "rewards/len_reward": -0.007896540686488152,
296
+ "rewards_std": 0.7439497336745262,
297
+ "step": 16
298
+ },
299
+ {
300
+ "clip_ratio": 0.0,
301
+ "completion_length": 9286.7734375,
302
+ "epoch": 0.16831683168316833,
303
+ "grad_norm": 0.2538006007671356,
304
+ "kl": 0.009235382080078125,
305
+ "learning_rate": 3.7268434097933267e-06,
306
+ "loss": 0.012023478746414185,
307
+ "max_completion_length": 14357.0,
308
+ "min_completion_length": 4187.625,
309
+ "num_updates": 17,
310
+ "rewards": 1.116831500083208,
311
+ "rewards/cosine_scaled_reward": 0.26869785273447633,
312
+ "rewards/format_reward2": 0.8046875,
313
+ "rewards/len_reward": 0.04344612918794155,
314
+ "rewards_std": 0.6232936978340149,
315
+ "step": 17
316
+ },
317
+ {
318
+ "clip_ratio": 0.0,
319
+ "completion_length": 7877.734375,
320
+ "epoch": 0.1782178217821782,
321
+ "grad_norm": 0.27215102314949036,
322
+ "kl": 0.01183319091796875,
323
+ "learning_rate": 3.6946294099155545e-06,
324
+ "loss": 0.00474470853805542,
325
+ "max_completion_length": 14090.375,
326
+ "min_completion_length": 2752.125,
327
+ "num_updates": 18,
328
+ "rewards": 1.222687341272831,
329
+ "rewards/cosine_scaled_reward": 0.3153993431478739,
330
+ "rewards/format_reward2": 0.875,
331
+ "rewards/len_reward": 0.032287961803376675,
332
+ "rewards_std": 0.7518719509243965,
333
+ "step": 18
334
+ },
335
+ {
336
+ "clip_ratio": 0.0,
337
+ "completion_length": 7099.703125,
338
+ "epoch": 0.18811881188118812,
339
+ "grad_norm": 0.3579545319080353,
340
+ "kl": 0.013427734375,
341
+ "learning_rate": 3.6607759655295948e-06,
342
+ "loss": 0.01689109206199646,
343
+ "max_completion_length": 14201.875,
344
+ "min_completion_length": 1985.625,
345
+ "num_updates": 19,
346
+ "rewards": 1.2932276129722595,
347
+ "rewards/cosine_scaled_reward": 0.3619839735329151,
348
+ "rewards/format_reward2": 0.8515625,
349
+ "rewards/len_reward": 0.07968113431707025,
350
+ "rewards_std": 0.7946057394146919,
351
+ "step": 19
352
+ },
353
+ {
354
+ "clip_ratio": 0.0,
355
+ "completion_length": 7809.1328125,
356
+ "epoch": 0.19801980198019803,
357
+ "grad_norm": 0.3970443904399872,
358
+ "kl": 0.0154876708984375,
359
+ "learning_rate": 3.6253158276565003e-06,
360
+ "loss": 0.013616234064102173,
361
+ "max_completion_length": 13511.875,
362
+ "min_completion_length": 1854.125,
363
+ "num_updates": 20,
364
+ "rewards": 1.3438544012606144,
365
+ "rewards/cosine_scaled_reward": 0.41305189533159137,
366
+ "rewards/format_reward2": 0.875,
367
+ "rewards/len_reward": 0.055802563671022654,
368
+ "rewards_std": 0.5804904215037823,
369
+ "step": 20
370
+ },
371
+ {
372
+ "clip_ratio": 0.0,
373
+ "completion_length": 9812.9296875,
374
+ "epoch": 0.2079207920792079,
375
+ "grad_norm": 0.5228389501571655,
376
+ "kl": 0.01609039306640625,
377
+ "learning_rate": 3.5882833016895067e-06,
378
+ "loss": -0.00042431801557540894,
379
+ "max_completion_length": 12778.25,
380
+ "min_completion_length": 4778.0,
381
+ "num_updates": 21,
382
+ "rewards": 1.136468593031168,
383
+ "rewards/cosine_scaled_reward": 0.18093573104124516,
384
+ "rewards/format_reward2": 0.875,
385
+ "rewards/len_reward": 0.08053285209462047,
386
+ "rewards_std": 0.5555343925952911,
387
+ "step": 21
388
+ },
389
+ {
390
+ "clip_ratio": 0.0,
391
+ "completion_length": 10106.0,
392
+ "epoch": 0.21782178217821782,
393
+ "grad_norm": 0.3004865050315857,
394
+ "kl": 0.01863861083984375,
395
+ "learning_rate": 3.5497142142057796e-06,
396
+ "loss": 0.0011682212352752686,
397
+ "max_completion_length": 13495.75,
398
+ "min_completion_length": 5747.125,
399
+ "num_updates": 22,
400
+ "rewards": 1.1095520546659827,
401
+ "rewards/cosine_scaled_reward": 0.20947218214860186,
402
+ "rewards/format_reward2": 0.875,
403
+ "rewards/len_reward": 0.025079891085624695,
404
+ "rewards_std": 0.4830879457294941,
405
+ "step": 22
406
+ },
407
+ {
408
+ "clip_ratio": 0.0,
409
+ "completion_length": 8428.5078125,
410
+ "epoch": 0.22772277227722773,
411
+ "grad_norm": 0.36966538429260254,
412
+ "kl": 0.01552581787109375,
413
+ "learning_rate": 3.509645878306514e-06,
414
+ "loss": 0.0047097280621528625,
415
+ "max_completion_length": 14159.0,
416
+ "min_completion_length": 1964.5,
417
+ "num_updates": 23,
418
+ "rewards": 1.1670421473681927,
419
+ "rewards/cosine_scaled_reward": 0.29000907950103283,
420
+ "rewards/format_reward2": 0.8515625,
421
+ "rewards/len_reward": 0.025470565538853407,
422
+ "rewards_std": 0.615565050393343,
423
+ "step": 23
424
+ },
425
+ {
426
+ "clip_ratio": 0.0,
427
+ "completion_length": 5892.2109375,
428
+ "epoch": 0.2376237623762376,
429
+ "grad_norm": 125.0189208984375,
430
+ "kl": 0.43308258056640625,
431
+ "learning_rate": 3.4681170575189206e-06,
432
+ "loss": 0.00223734974861145,
433
+ "max_completion_length": 11146.375,
434
+ "min_completion_length": 1771.125,
435
+ "num_updates": 24,
436
+ "rewards": 1.4564557410776615,
437
+ "rewards/cosine_scaled_reward": 0.44786818977445364,
438
+ "rewards/format_reward2": 0.90625,
439
+ "rewards/len_reward": 0.10233754548244178,
440
+ "rewards_std": 0.6475037336349487,
441
+ "step": 24
442
+ },
443
+ {
444
+ "clip_ratio": 0.0,
445
+ "completion_length": 6293.140625,
446
+ "epoch": 0.24752475247524752,
447
+ "grad_norm": 0.4965859651565552,
448
+ "kl": 0.0188446044921875,
449
+ "learning_rate": 3.425167928295014e-06,
450
+ "loss": 0.019756004214286804,
451
+ "max_completion_length": 11885.375,
452
+ "min_completion_length": 2043.5,
453
+ "num_updates": 25,
454
+ "rewards": 1.2420116439461708,
455
+ "rewards/cosine_scaled_reward": 0.24037119653075933,
456
+ "rewards/format_reward2": 0.921875,
457
+ "rewards/len_reward": 0.07976543391123414,
458
+ "rewards_std": 0.768707849085331,
459
+ "step": 25
460
+ },
461
+ {
462
+ "clip_ratio": 0.0,
463
+ "completion_length": 7320.9765625,
464
+ "epoch": 0.25742574257425743,
465
+ "grad_norm": 0.32264769077301025,
466
+ "kl": 0.0201263427734375,
467
+ "learning_rate": 3.3808400411434935e-06,
468
+ "loss": 0.007990241050720215,
469
+ "max_completion_length": 14976.25,
470
+ "min_completion_length": 1978.0,
471
+ "num_updates": 26,
472
+ "rewards": 1.2049608379602432,
473
+ "rewards/cosine_scaled_reward": 0.328420914709568,
474
+ "rewards/format_reward2": 0.8671875,
475
+ "rewards/len_reward": 0.009352410677820444,
476
+ "rewards_std": 0.7654620930552483,
477
+ "step": 26
478
+ },
479
+ {
480
+ "clip_ratio": 0.0,
481
+ "completion_length": 5956.828125,
482
+ "epoch": 0.26732673267326734,
483
+ "grad_norm": 0.3196789026260376,
484
+ "kl": 0.0207061767578125,
485
+ "learning_rate": 3.335176280432307e-06,
486
+ "loss": -0.00398920476436615,
487
+ "max_completion_length": 10882.125,
488
+ "min_completion_length": 2554.375,
489
+ "num_updates": 27,
490
+ "rewards": 1.3529352433979511,
491
+ "rewards/cosine_scaled_reward": 0.30559817608445883,
492
+ "rewards/format_reward2": 0.9609375,
493
+ "rewards/len_reward": 0.08639959944412112,
494
+ "rewards_std": 0.7427709549665451,
495
+ "step": 27
496
+ },
497
+ {
498
+ "clip_ratio": 0.0,
499
+ "completion_length": 6028.84375,
500
+ "epoch": 0.27722772277227725,
501
+ "grad_norm": 0.3432248532772064,
502
+ "kl": 0.02164459228515625,
503
+ "learning_rate": 3.2882208229007955e-06,
504
+ "loss": -0.015418417751789093,
505
+ "max_completion_length": 11848.0,
506
+ "min_completion_length": 2110.75,
507
+ "num_updates": 28,
508
+ "rewards": 1.3594568185508251,
509
+ "rewards/cosine_scaled_reward": 0.35286577604711056,
510
+ "rewards/format_reward2": 0.90625,
511
+ "rewards/len_reward": 0.10034103039652109,
512
+ "rewards_std": 0.7156434431672096,
513
+ "step": 28
514
+ },
515
+ {
516
+ "clip_ratio": 0.0,
517
+ "completion_length": 8682.453125,
518
+ "epoch": 0.2871287128712871,
519
+ "grad_norm": 0.2364882528781891,
520
+ "kl": 0.024139404296875,
521
+ "learning_rate": 3.24001909492155e-06,
522
+ "loss": 0.0035642534494400024,
523
+ "max_completion_length": 13773.375,
524
+ "min_completion_length": 3882.25,
525
+ "num_updates": 29,
526
+ "rewards": 1.13150573708117,
527
+ "rewards/cosine_scaled_reward": 0.195555618731305,
528
+ "rewards/format_reward2": 0.9140625,
529
+ "rewards/len_reward": 0.021887621260248125,
530
+ "rewards_std": 0.6196031682193279,
531
+ "step": 29
532
+ },
533
+ {
534
+ "clip_ratio": 0.0,
535
+ "completion_length": 9472.0859375,
536
+ "epoch": 0.297029702970297,
537
+ "grad_norm": 0.23454353213310242,
538
+ "kl": 0.029876708984375,
539
+ "learning_rate": 3.190617728553332e-06,
540
+ "loss": 0.0017639100551605225,
541
+ "max_completion_length": 14098.75,
542
+ "min_completion_length": 4757.875,
543
+ "num_updates": 30,
544
+ "rewards": 1.0655029881745577,
545
+ "rewards/cosine_scaled_reward": 0.137826404068619,
546
+ "rewards/format_reward2": 0.8984375,
547
+ "rewards/len_reward": 0.029239090159535408,
548
+ "rewards_std": 0.5960428677499294,
549
+ "step": 30
550
+ },
551
+ {
552
+ "clip_ratio": 0.0,
553
+ "completion_length": 6721.03125,
554
+ "epoch": 0.3069306930693069,
555
+ "grad_norm": 0.36463433504104614,
556
+ "kl": 0.02364349365234375,
557
+ "learning_rate": 3.140064516427565e-06,
558
+ "loss": 0.02541273832321167,
559
+ "max_completion_length": 11538.875,
560
+ "min_completion_length": 3436.5,
561
+ "num_updates": 31,
562
+ "rewards": 1.2696323096752167,
563
+ "rewards/cosine_scaled_reward": 0.264737417222932,
564
+ "rewards/format_reward2": 0.921875,
565
+ "rewards/len_reward": 0.08301988849416375,
566
+ "rewards_std": 0.7188399098813534,
567
+ "step": 31
568
+ },
569
+ {
570
+ "clip_ratio": 0.0,
571
+ "completion_length": 7162.3828125,
572
+ "epoch": 0.31683168316831684,
573
+ "grad_norm": 0.5464898347854614,
574
+ "kl": 0.02471923828125,
575
+ "learning_rate": 3.0884083655120544e-06,
576
+ "loss": 0.01196742057800293,
577
+ "max_completion_length": 10615.375,
578
+ "min_completion_length": 4111.875,
579
+ "num_updates": 32,
580
+ "rewards": 1.05987061932683,
581
+ "rewards/cosine_scaled_reward": 0.07295701105613261,
582
+ "rewards/format_reward2": 0.96875,
583
+ "rewards/len_reward": 0.018163591157644987,
584
+ "rewards_std": 0.6865731440484524,
585
+ "step": 32
586
+ },
587
+ {
588
+ "clip_ratio": 0.0,
589
+ "completion_length": 8008.421875,
590
+ "epoch": 0.32673267326732675,
591
+ "grad_norm": 67.73995208740234,
592
+ "kl": 0.0318756103515625,
593
+ "learning_rate": 3.0356992497966503e-06,
594
+ "loss": -0.01266103982925415,
595
+ "max_completion_length": 12517.5,
596
+ "min_completion_length": 2955.875,
597
+ "num_updates": 33,
598
+ "rewards": 1.1564012691378593,
599
+ "rewards/cosine_scaled_reward": 0.18674227688461542,
600
+ "rewards/format_reward2": 0.9453125,
601
+ "rewards/len_reward": 0.024346530437469482,
602
+ "rewards_std": 0.5944486074149609,
603
+ "step": 33
604
+ },
605
+ {
606
+ "clip_ratio": 0.0,
607
+ "completion_length": 5801.1328125,
608
+ "epoch": 0.33663366336633666,
609
+ "grad_norm": 0.44804856181144714,
610
+ "kl": 0.0241241455078125,
611
+ "learning_rate": 2.981988161946644e-06,
612
+ "loss": -0.0008684098720550537,
613
+ "max_completion_length": 13239.625,
614
+ "min_completion_length": 1896.5,
615
+ "num_updates": 34,
616
+ "rewards": 1.5373370498418808,
617
+ "rewards/cosine_scaled_reward": 0.4724404886364937,
618
+ "rewards/format_reward2": 0.9609375,
619
+ "rewards/len_reward": 0.10395912081003189,
620
+ "rewards_std": 0.5325119644403458,
621
+ "step": 34
622
+ },
623
+ {
624
+ "clip_ratio": 0.0,
625
+ "completion_length": 7891.390625,
626
+ "epoch": 0.3465346534653465,
627
+ "grad_norm": 0.395713746547699,
628
+ "kl": 0.0246734619140625,
629
+ "learning_rate": 2.9273270639706544e-06,
630
+ "loss": 0.009494274854660034,
631
+ "max_completion_length": 13065.75,
632
+ "min_completion_length": 3577.25,
633
+ "num_updates": 35,
634
+ "rewards": 1.2487693056464195,
635
+ "rewards/cosine_scaled_reward": 0.21439548954367638,
636
+ "rewards/format_reward2": 0.9609375,
637
+ "rewards/len_reward": 0.0734363030642271,
638
+ "rewards_std": 0.6400604620575905,
639
+ "step": 35
640
+ },
641
+ {
642
+ "clip_ratio": 0.0,
643
+ "completion_length": 8915.25,
644
+ "epoch": 0.3564356435643564,
645
+ "grad_norm": 0.33517077565193176,
646
+ "kl": 0.0334320068359375,
647
+ "learning_rate": 2.871768836950742e-06,
648
+ "loss": -0.018658161163330078,
649
+ "max_completion_length": 12554.875,
650
+ "min_completion_length": 5071.375,
651
+ "num_updates": 36,
652
+ "rewards": 1.1192209478467703,
653
+ "rewards/cosine_scaled_reward": 0.15578080737031996,
654
+ "rewards/format_reward2": 0.9296875,
655
+ "rewards/len_reward": 0.03375265281647444,
656
+ "rewards_std": 0.5714416801929474,
657
+ "step": 36
658
+ },
659
+ {
660
+ "clip_ratio": 0.0,
661
+ "completion_length": 6871.40625,
662
+ "epoch": 0.36633663366336633,
663
+ "grad_norm": 0.3194531202316284,
664
+ "kl": 0.0283966064453125,
665
+ "learning_rate": 2.8153672298833772e-06,
666
+ "loss": 0.027765318751335144,
667
+ "max_completion_length": 11280.625,
668
+ "min_completion_length": 2181.75,
669
+ "num_updates": 37,
670
+ "rewards": 1.2906805723905563,
671
+ "rewards/cosine_scaled_reward": 0.289469544775784,
672
+ "rewards/format_reward2": 0.9609375,
673
+ "rewards/len_reward": 0.04027354822028428,
674
+ "rewards_std": 0.6187824495136738,
675
+ "step": 37
676
+ },
677
+ {
678
+ "clip_ratio": 0.0,
679
+ "completion_length": 7555.359375,
680
+ "epoch": 0.37623762376237624,
681
+ "grad_norm": 0.329673707485199,
682
+ "kl": 0.03289794921875,
683
+ "learning_rate": 2.7581768076807586e-06,
684
+ "loss": 0.00029387325048446655,
685
+ "max_completion_length": 13576.25,
686
+ "min_completion_length": 3269.75,
687
+ "num_updates": 38,
688
+ "rewards": 0.9393773451447487,
689
+ "rewards/cosine_scaled_reward": 0.02606131136417389,
690
+ "rewards/format_reward2": 0.9375,
691
+ "rewards/len_reward": -0.024183956440538168,
692
+ "rewards_std": 0.7055792585015297,
693
+ "step": 38
694
+ },
695
+ {
696
+ "clip_ratio": 0.0,
697
+ "completion_length": 7003.8125,
698
+ "epoch": 0.38613861386138615,
699
+ "grad_norm": 0.3149705231189728,
700
+ "kl": 0.03338623046875,
701
+ "learning_rate": 2.700252898382781e-06,
702
+ "loss": 0.00039067864418029785,
703
+ "max_completion_length": 12233.875,
704
+ "min_completion_length": 2225.0,
705
+ "num_updates": 39,
706
+ "rewards": 1.323565311729908,
707
+ "rewards/cosine_scaled_reward": 0.23708410863764584,
708
+ "rewards/format_reward2": 0.9609375,
709
+ "rewards/len_reward": 0.12554369773715734,
710
+ "rewards_std": 0.639260545372963,
711
+ "step": 39
712
+ },
713
+ {
714
+ "clip_ratio": 0.0,
715
+ "completion_length": 5583.1171875,
716
+ "epoch": 0.39603960396039606,
717
+ "grad_norm": 0.4048033356666565,
718
+ "kl": 0.027130126953125,
719
+ "learning_rate": 2.641651539630735e-06,
720
+ "loss": 0.015950188040733337,
721
+ "max_completion_length": 9941.625,
722
+ "min_completion_length": 1826.0,
723
+ "num_updates": 40,
724
+ "rewards": 1.4943003356456757,
725
+ "rewards/cosine_scaled_reward": 0.4848987963050604,
726
+ "rewards/format_reward2": 0.921875,
727
+ "rewards/len_reward": 0.08752657752484083,
728
+ "rewards_std": 0.636099562048912,
729
+ "step": 40
730
+ }
731
+ ],
732
+ "logging_steps": 1,
733
+ "max_steps": 101,
734
+ "num_input_tokens_seen": 0,
735
+ "num_train_epochs": 1,
736
+ "save_steps": 5,
737
+ "stateful_callbacks": {
738
+ "TrainerControl": {
739
+ "args": {
740
+ "should_epoch_stop": false,
741
+ "should_evaluate": false,
742
+ "should_log": true,
743
+ "should_save": true,
744
+ "should_training_stop": false
745
+ },
746
+ "attributes": {}
747
+ }
748
+ },
749
+ "total_flos": 0,
750
+ "train_batch_size": null,
751
+ "trial_name": null,
752
+ "trial_params": null
753
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645eb1f2a6977df3f64905f109d54d6f457b9a645e4f958a1cb779812aa238c1
3
+ size 7928
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)