--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-reddit-5 results: [] --- # xlm-roberta-reddit-5 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4454 - Accuracy: 0.8677 - F1: 0.8380 - Precision: 0.8594 - Recall: 0.8353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 74 | 1.0770 | 0.5185 | 0.3072 | 0.2694 | 0.3933 | | No log | 2.0 | 148 | 0.8862 | 0.6667 | 0.4737 | 0.4204 | 0.5580 | | No log | 3.0 | 222 | 0.6454 | 0.7143 | 0.5819 | 0.7749 | 0.6237 | | No log | 4.0 | 296 | 0.4804 | 0.8360 | 0.7701 | 0.8185 | 0.7899 | | No log | 5.0 | 370 | 0.4454 | 0.8677 | 0.8380 | 0.8594 | 0.8353 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1