--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-reddit-10 results: [] --- # xlm-roberta-reddit-10 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7624 - Accuracy: 0.7675 - F1: 0.7491 - Precision: 0.7711 - Recall: 0.7457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 123 | 1.5725 | 0.4236 | 0.2919 | 0.2961 | 0.339 | | No log | 2.0 | 246 | 1.1745 | 0.6051 | 0.4965 | 0.6084 | 0.5353 | | No log | 3.0 | 369 | 0.9715 | 0.7166 | 0.6859 | 0.7459 | 0.6734 | | No log | 4.0 | 492 | 0.7882 | 0.7834 | 0.7679 | 0.7870 | 0.7656 | | 1.3067 | 5.0 | 615 | 0.7624 | 0.7675 | 0.7491 | 0.7711 | 0.7457 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1