--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm_roberta_top5 results: [] --- # xlm-roberta-csfd-5 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0730 - Accuracy: 0.984 - F1: 0.9840 - Precision: 0.9841 - Recall: 0.984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 146 | 0.6296 | 0.7173 | 0.7040 | 0.8114 | 0.7173 | | No log | 2.0 | 292 | 0.1358 | 0.9707 | 0.9707 | 0.9738 | 0.9707 | | No log | 3.0 | 438 | 0.1222 | 0.976 | 0.9758 | 0.9763 | 0.976 | | 0.4438 | 4.0 | 584 | 0.0690 | 0.984 | 0.9839 | 0.9841 | 0.984 | | 0.4438 | 5.0 | 730 | 0.0730 | 0.984 | 0.9840 | 0.9841 | 0.984 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1