--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm_roberta_top20 results: [] --- # xlm-roberta-csfd-20 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1968 - Accuracy: 0.9607 - F1: 0.9610 - Precision: 0.9627 - Recall: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.8509 | 1.0 | 584 | 0.6074 | 0.8533 | 0.8547 | 0.8792 | 0.8533 | | 0.5597 | 2.0 | 1168 | 0.3286 | 0.9167 | 0.9176 | 0.9303 | 0.9167 | | 0.2302 | 3.0 | 1752 | 0.2387 | 0.9413 | 0.9422 | 0.9491 | 0.9413 | | 0.1052 | 4.0 | 2336 | 0.2314 | 0.9487 | 0.9494 | 0.9528 | 0.9487 | | 0.0662 | 5.0 | 2920 | 0.1968 | 0.9607 | 0.9610 | 0.9627 | 0.9607 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1