--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm_roberta_top10 results: [] --- # xlm-roberta-csfd-10 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1591 - Accuracy: 0.9613 - F1: 0.9617 - Precision: 0.9630 - Recall: 0.9613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 292 | 0.5781 | 0.8427 | 0.8432 | 0.8710 | 0.8427 | | 1.0772 | 2.0 | 584 | 0.2642 | 0.9213 | 0.9213 | 0.9327 | 0.9213 | | 1.0772 | 3.0 | 876 | 0.2215 | 0.9413 | 0.9408 | 0.9484 | 0.9413 | | 0.1222 | 4.0 | 1168 | 0.1546 | 0.96 | 0.9604 | 0.9618 | 0.9600 | | 0.1222 | 5.0 | 1460 | 0.1591 | 0.9613 | 0.9617 | 0.9630 | 0.9613 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.1