File size: 1,647 Bytes
556a904 5519748 556a904 5519748 556a904 5519748 556a904 5519748 556a904 5519748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: transformers
tags: []
---
# Model Card for Vigor-72B
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/RUCAIBox/Virgo
- **Paper:** https://arxiv.org/pdf/2501.01904
## Quick Start
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```
from vllm import LLM, SamplingParams
from PIL import Image
model_name = "RUC-AIBOX/Virgo-72B"
placeholder = "<|image_pad|>"
llm = LLM(
model=model_name,
trust_remote_code=True,
tensor_parallel_size=8,
)
question = "Please first think deeply about the question, and then put the final answer in \\boxed{}.\nIn the diagram, $\\angle E A D=90^{\\circ}, \\angle A C D=90^{\\circ}$, and $\\angle A B C=90^{\\circ}$. Also, $E D=13, E A=12$, $D C=4$, and $C B=2$. Determine the length of $A B$."
prompt = ("<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
f"<|im_start|>user\n<|vision_start|>{placeholder}<|vision_end|>"
f"{question}<|im_end|>\n"
"<|im_start|>assistant\n")
stop_token_ids = None
sampling_params = SamplingParams(
temperature=0.0,
top_k=1,
top_p=1.0,
stop_token_ids=stop_token_ids,
repetition_penalty=1.05,
max_tokens=8192
)
image = Image.open("case/2246_image_1.jpg")
inputs = {
"prompt": prompt,
"multi_modal_data": {
"image": image
},
}
outputs = llm.generate(inputs, sampling_params)
print(outputs[0].outputs[0].text)
``` |