---
license: mit
tags:
- RLinf
language:
- en
metrics:
- accuracy
base_model:
- deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
pipeline_tag: reinforcement-learning
model-index:
- name: RLinf-math-7B
results:
- task:
type: math # Required. Example: automatic-speech-recognition
dataset:
type: aime_2024 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: AIME24 # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 68.328125 # Required. Example: 20.90
- task:
type: math # Required. Example: automatic-speech-recognition
dataset:
type: aime_2025 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: AIME25 # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 52.19375 # Required. Example: 20.90
- task:
type: stem # Required. Example: automatic-speech-recognition
dataset:
type: gpqa_diamond # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: GPQA-diamond # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 48.178124999999994 # Required. Example: 20.90
---
RLinf: Reinforcement Learning Infrastructure for Agentic AI
[RLinf](https://github.com/RLinf/RLinf) is a flexible and scalable open-source infrastructure designed for post-training foundation models (LLMs, VLMs, VLAs) via reinforcement learning. The 'inf' in RLinf stands for Infrastructure, highlighting its role as a robust backbone for next-generation training. It also stands for Infinite, symbolizing the system’s support for open-ended learning, continuous generalization, and limitless possibilities in intelligence development.
## Model Description
The RLinf-math series is trained on DeepSeek-R1-Distill-Qwen (1.5B and 7B variants), using the same base models and training datasets as AReaL. Training with RLinf yields SOTA performance.
We adopt Group Relative Policy Optimization (GRPO) with token-level loss aggregation, focusing on mathematical reasoning and long chain-of-thought (CoT) tasks.
## Evaluation and Results
We trained and evaluated two models using RLinf:
- RLinf-math-1.5B Model (based on DeepSeek-R1-Distill-Qwen-1.5B)
- Recommended sampling settings: `temperature = 0.6`, `top_p = 0.95`
- RLinf-math-7B Model (based on DeepSeek-R1-Distill-Qwen-7B)
- Recommended sampling settings: `temperature = 1.0`, `top_p = 0.95`
### Benchmark Results
**1.5B models**. All models except the base model are trained upon DeepSeek-R1-Distill-Qwen-1.5B using RL.
| Model | AIME 24 | AIME 25 | GPQA-diamond | Average |
| ------------------------------------------ | --------- | --------- | ------------ | --------- |
| [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) | 28.33 | 24.90 | 27.45 | 26.89 |
| [DeepMath-1.5B](https://huggingface.co/zwhe99/DeepMath-1.5B) | 37.80 | 30.42 | 32.11 | 33.44 |
| [DeepScaleR-1.5B-Preview](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) | 40.41 | 30.93 | 27.54 | 32.96 |
| [AReaL-1.5B-Preview-Stage-3](https://huggingface.co/inclusionAI/AReaL-1.5B-Preview-Stage-3) | 40.73 | 31.56 | 28.10 | 33.46 |
| AReaL-1.5B-retrain* | 44.42 | 34.27 | 33.81 | 37.50 |
| [FastCuRL-1.5B-V3](https://huggingface.co/Nickyang/FastCuRL-1.5B-V3) | 43.65 | 32.49 | 35.00 | 37.05 |
| [RLinf-math-1.5B](https://huggingface.co/RLinf/RLinf-math-1.5B) | **48.44** | **35.63** | **38.46** | **40.84** |
\* We retrain the model using the default settings for 600 steps.
**7B models**. All models except the base model are trained upon DeepSeek-R1-Distill-Qwen-7B using RL.
| Model | AIME 24 | AIME 25 | GPQA-diamond | Average |
| ---------------------------------------- | --------- | --------- | ------------ | --------- |
| [DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) | 54.90 | 40.20 | 45.48 | 46.86 |
| [AReaL-boba-RL-7B](https://huggingface.co/inclusionAI/AReaL-boba-RL-7B) | 61.66 | 49.38 | 46.93 | 52.66 |
| [Skywork-OR1-7B](https://huggingface.co/Skywork/Skywork-OR1-7B) | 66.87 | 52.49 | 44.43 | 54.60 |
| [Polaris-7B-Preview](https://huggingface.co/POLARIS-Project/Polaris-7B-Preview) | **68.55** | 51.24 | 43.88 | 54.56 |
| [AceMath-RL-Nemotron-7B](https://huggingface.co/nvidia/AceMath-RL-Nemotron-7B) | 67.30 | **55.00** | 45.57 | 55.96 |
| [RLinf-math-7B](https://huggingface.co/RLinf/RLinf-math-7B) | 68.33 | 52.19 | **48.18** | **56.23** |
## How to Use
Example with Hugging Face `transformers`:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "RLinf/RLinf-math-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
prompt = "Solve: If x^2 + 2x + 1 = 0, what is x?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=1.0, # recommended for 7B
top_p=0.95
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## License
This code repository and the model weights are licensed under the MIT License.