import torch import torch.nn as nn import torchvision from .ResNet import ResNet50 def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) class TransBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, upsample=None, **kwargs): super(TransBasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, inplanes) self.bn1 = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) if upsample is not None and stride != 1: self.conv2 = nn.ConvTranspose2d( inplanes, planes, kernel_size=3, stride=stride, padding=1, output_padding=1, bias=False, ) else: self.conv2 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.upsample = upsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.upsample is not None: residual = self.upsample(x) out += residual out = self.relu(out) return out class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), "kernel size must be 3 or 7" padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(1, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): max_out, _ = torch.max(x, dim=1, keepdim=True) x = max_out x = self.conv1(x) return self.sigmoid(x) class BasicConv2d(nn.Module): def __init__( self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1 ): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d( in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False, ) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) return x # Global Contextual module class GCM(nn.Module): def __init__(self, in_channel, out_channel): super(GCM, self).__init__() self.relu = nn.ReLU(True) self.branch0 = nn.Sequential( BasicConv2d(in_channel, out_channel, 1), ) self.branch1 = nn.Sequential( BasicConv2d(in_channel, out_channel, 1), BasicConv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)), BasicConv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)), BasicConv2d(out_channel, out_channel, 3, padding=3, dilation=3), ) self.branch2 = nn.Sequential( BasicConv2d(in_channel, out_channel, 1), BasicConv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)), BasicConv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)), BasicConv2d(out_channel, out_channel, 3, padding=5, dilation=5), ) self.branch3 = nn.Sequential( BasicConv2d(in_channel, out_channel, 1), BasicConv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)), BasicConv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)), BasicConv2d(out_channel, out_channel, 3, padding=7, dilation=7), ) self.conv_cat = BasicConv2d(4 * out_channel, out_channel, 3, padding=1) self.conv_res = BasicConv2d(in_channel, out_channel, 1) def forward(self, x): x0 = self.branch0(x) x1 = self.branch1(x) x2 = self.branch2(x) x3 = self.branch3(x) x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1)) x = self.relu(x_cat + self.conv_res(x)) return x # aggregation of the high-level(teacher) features class aggregation_init(nn.Module): def __init__(self, channel): super(aggregation_init, self).__init__() self.relu = nn.ReLU(True) self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) self.conv4 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) self.conv5 = nn.Conv2d(3 * channel, 1, 1) def forward(self, x1, x2, x3): x1_1 = x1 x2_1 = self.conv_upsample1(self.upsample(x1)) * x2 x3_1 = ( self.conv_upsample2(self.upsample(self.upsample(x1))) * self.conv_upsample3(self.upsample(x2)) * x3 ) x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) x2_2 = self.conv_concat2(x2_2) x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1) x3_2 = self.conv_concat3(x3_2) x = self.conv4(x3_2) x = self.conv5(x) return x # aggregation of the low-level(student) features class aggregation_final(nn.Module): def __init__(self, channel): super(aggregation_final, self).__init__() self.relu = nn.ReLU(True) self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True) self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1) self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1) self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1) def forward(self, x1, x2, x3): x1_1 = x1 x2_1 = self.conv_upsample1(self.upsample(x1)) * x2 x3_1 = self.conv_upsample2(self.upsample(x1)) * self.conv_upsample3(x2) * x3 x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1) x2_2 = self.conv_concat2(x2_2) x3_2 = torch.cat((x3_1, self.conv_upsample5(x2_2)), 1) x3_2 = self.conv_concat3(x3_2) return x3_2 # Refinement flow class Refine(nn.Module): def __init__(self): super(Refine, self).__init__() self.upsample2 = nn.Upsample( scale_factor=2, mode="bilinear", align_corners=True ) def forward(self, attention, x1, x2, x3): # Note that there is an error in the manuscript. In the paper, the refinement strategy is depicted as ""f'=f*S1"", it should be ""f'=f+f*S1"". x1 = x1 + torch.mul(x1, self.upsample2(attention)) x2 = x2 + torch.mul(x2, self.upsample2(attention)) x3 = x3 + torch.mul(x3, attention) return x1, x2, x3 # BBSNet class BBSNet(nn.Module): def __init__(self, channel=32): super(BBSNet, self).__init__() # Backbone model self.resnet = ResNet50("rgb") self.resnet_depth = ResNet50("rgbd") # Decoder 1 self.rfb2_1 = GCM(512, channel) self.rfb3_1 = GCM(1024, channel) self.rfb4_1 = GCM(2048, channel) self.agg1 = aggregation_init(channel) # Decoder 2 self.rfb0_2 = GCM(64, channel) self.rfb1_2 = GCM(256, channel) self.rfb5_2 = GCM(512, channel) self.agg2 = aggregation_final(channel) # upsample function self.upsample = nn.Upsample(scale_factor=8, mode="bilinear", align_corners=True) self.upsample4 = nn.Upsample( scale_factor=4, mode="bilinear", align_corners=True ) self.upsample2 = nn.Upsample( scale_factor=2, mode="bilinear", align_corners=True ) # Refinement flow self.HA = Refine() # Components of DEM module self.atten_depth_channel_0 = ChannelAttention(64) self.atten_depth_channel_1 = ChannelAttention(256) self.atten_depth_channel_2 = ChannelAttention(512) self.atten_depth_channel_3_1 = ChannelAttention(1024) self.atten_depth_channel_4_1 = ChannelAttention(2048) self.atten_depth_spatial_0 = SpatialAttention() self.atten_depth_spatial_1 = SpatialAttention() self.atten_depth_spatial_2 = SpatialAttention() self.atten_depth_spatial_3_1 = SpatialAttention() self.atten_depth_spatial_4_1 = SpatialAttention() # Components of PTM module self.inplanes = 32 * 2 self.deconv1 = self._make_transpose(TransBasicBlock, 32 * 2, 3, stride=2) self.inplanes = 32 self.deconv2 = self._make_transpose(TransBasicBlock, 32, 3, stride=2) self.agant1 = self._make_agant_layer(32 * 3, 32 * 2) self.agant2 = self._make_agant_layer(32 * 2, 32) self.out0_conv = nn.Conv2d(32 * 3, 1, kernel_size=1, stride=1, bias=True) self.out1_conv = nn.Conv2d(32 * 2, 1, kernel_size=1, stride=1, bias=True) self.out2_conv = nn.Conv2d(32 * 1, 1, kernel_size=1, stride=1, bias=True) #if self.training: # self.initialize_weights() def forward(self, x, x_depth): x = self.resnet.conv1(x) x = self.resnet.bn1(x) x = self.resnet.relu(x) x = self.resnet.maxpool(x) x_depth = self.resnet_depth.conv1(x_depth) x_depth = self.resnet_depth.bn1(x_depth) x_depth = self.resnet_depth.relu(x_depth) x_depth = self.resnet_depth.maxpool(x_depth) # layer0 merge temp = x_depth.mul(self.atten_depth_channel_0(x_depth)) temp = temp.mul(self.atten_depth_spatial_0(temp)) x = x + temp # layer0 merge end x1 = self.resnet.layer1(x) # 256 x 64 x 64 x1_depth = self.resnet_depth.layer1(x_depth) # layer1 merge temp = x1_depth.mul(self.atten_depth_channel_1(x1_depth)) temp = temp.mul(self.atten_depth_spatial_1(temp)) x1 = x1 + temp # layer1 merge end x2 = self.resnet.layer2(x1) # 512 x 32 x 32 x2_depth = self.resnet_depth.layer2(x1_depth) # layer2 merge temp = x2_depth.mul(self.atten_depth_channel_2(x2_depth)) temp = temp.mul(self.atten_depth_spatial_2(temp)) x2 = x2 + temp # layer2 merge end x2_1 = x2 x3_1 = self.resnet.layer3_1(x2_1) # 1024 x 16 x 16 x3_1_depth = self.resnet_depth.layer3_1(x2_depth) # layer3_1 merge temp = x3_1_depth.mul(self.atten_depth_channel_3_1(x3_1_depth)) temp = temp.mul(self.atten_depth_spatial_3_1(temp)) x3_1 = x3_1 + temp # layer3_1 merge end x4_1 = self.resnet.layer4_1(x3_1) # 2048 x 8 x 8 x4_1_depth = self.resnet_depth.layer4_1(x3_1_depth) # layer4_1 merge temp = x4_1_depth.mul(self.atten_depth_channel_4_1(x4_1_depth)) temp = temp.mul(self.atten_depth_spatial_4_1(temp)) x4_1 = x4_1 + temp # layer4_1 merge end # produce initial saliency map by decoder1 x2_1 = self.rfb2_1(x2_1) x3_1 = self.rfb3_1(x3_1) x4_1 = self.rfb4_1(x4_1) attention_map = self.agg1(x4_1, x3_1, x2_1) # Refine low-layer features by initial map x, x1, x5 = self.HA(attention_map.sigmoid(), x, x1, x2) # produce final saliency map by decoder2 x0_2 = self.rfb0_2(x) x1_2 = self.rfb1_2(x1) x5_2 = self.rfb5_2(x5) y = self.agg2(x5_2, x1_2, x0_2) # *4 # PTM module y = self.agant1(y) y = self.deconv1(y) y = self.agant2(y) y = self.deconv2(y) y = self.out2_conv(y) return self.upsample(attention_map), y def _make_agant_layer(self, inplanes, planes): layers = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(planes), nn.ReLU(inplace=True), ) return layers def _make_transpose(self, block, planes, blocks, stride=1): upsample = None if stride != 1: upsample = nn.Sequential( nn.ConvTranspose2d( self.inplanes, planes, kernel_size=2, stride=stride, padding=0, bias=False, ), nn.BatchNorm2d(planes), ) elif self.inplanes != planes: upsample = nn.Sequential( nn.Conv2d( self.inplanes, planes, kernel_size=1, stride=stride, bias=False ), nn.BatchNorm2d(planes), ) layers = [] for i in range(1, blocks): layers.append(block(self.inplanes, self.inplanes)) layers.append(block(self.inplanes, planes, stride, upsample)) self.inplanes = planes return nn.Sequential(*layers) # initialize the weights def initialize_weights(self): res50 = torchvision.models.resnet50(pretrained=True) pretrained_dict = res50.state_dict() all_params = {} for k, v in self.resnet.state_dict().items(): if k in pretrained_dict.keys(): v = pretrained_dict[k] all_params[k] = v elif "_1" in k: name = k.split("_1")[0] + k.split("_1")[1] v = pretrained_dict[name] all_params[k] = v elif "_2" in k: name = k.split("_2")[0] + k.split("_2")[1] v = pretrained_dict[name] all_params[k] = v assert len(all_params.keys()) == len(self.resnet.state_dict().keys()) self.resnet.load_state_dict(all_params) all_params = {} for k, v in self.resnet_depth.state_dict().items(): if k == "conv1.weight": all_params[k] = torch.nn.init.normal_(v, mean=0, std=1) elif k in pretrained_dict.keys(): v = pretrained_dict[k] all_params[k] = v elif "_1" in k: name = k.split("_1")[0] + k.split("_1")[1] v = pretrained_dict[name] all_params[k] = v elif "_2" in k: name = k.split("_2")[0] + k.split("_2")[1] v = pretrained_dict[name] all_params[k] = v assert len(all_params.keys()) == len(self.resnet_depth.state_dict().keys()) self.resnet_depth.load_state_dict(all_params)