Commit
·
32d1220
1
Parent(s):
917689e
Update README.md
Browse files
README.md
CHANGED
@@ -40,7 +40,61 @@ datasets:
|
|
40 |
|
41 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
### Downstream Use [optional]
|
46 |
|
|
|
40 |
|
41 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
|
43 |
+
```python
|
44 |
+
import numpy as np
|
45 |
+
from datasets import load_dataset
|
46 |
+
from matplotlib import cm
|
47 |
+
from PIL import Image
|
48 |
+
from transformers import AutoImageProcessor, AutoModel
|
49 |
+
|
50 |
+
model = AutoModel.from_pretrained("RGBD-SOD/bbsnet", trust_remote_code=True)
|
51 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
52 |
+
"RGBD-SOD/bbsnet", trust_remote_code=True
|
53 |
+
)
|
54 |
+
dataset = load_dataset("RGBD-SOD/test", "v1", split="train", cache_dir="data")
|
55 |
+
|
56 |
+
index = 0
|
57 |
+
|
58 |
+
"""
|
59 |
+
Get a specific sample from the dataset
|
60 |
+
|
61 |
+
sample = {
|
62 |
+
'depth': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
|
63 |
+
'rgb': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x360>,
|
64 |
+
'gt': <PIL.PngImagePlugin.PngImageFile image mode=L size=640x360>,
|
65 |
+
'name': 'COME_Train_5'
|
66 |
+
}
|
67 |
+
"""
|
68 |
+
sample = dataset[index]
|
69 |
+
|
70 |
+
|
71 |
+
"""
|
72 |
+
preprocessed_sample = {
|
73 |
+
'rgb': tensor([[[[-0.8507, ....0365]]]]),
|
74 |
+
'gt': tensor([[[[0., 0., 0...., 0.]]]]),
|
75 |
+
'depth': tensor([[[[0.9529, 0....3490]]]])
|
76 |
+
}
|
77 |
+
"""
|
78 |
+
preprocessed_sample = image_processor.preprocess(sample)
|
79 |
+
|
80 |
+
"""
|
81 |
+
output = {
|
82 |
+
'logits': tensor([[[[-5.1966, ...ackward0>)
|
83 |
+
}
|
84 |
+
"""
|
85 |
+
output = model(preprocessed_sample["rgb"], preprocessed_sample["depth"])
|
86 |
+
|
87 |
+
postprocessed_sample: np.ndarray = image_processor.postprocess(
|
88 |
+
output["logits"], [sample["gt"].size[1], sample["gt"].size[0]]
|
89 |
+
)
|
90 |
+
prediction = Image.fromarray(np.uint8(cm.gist_earth(postprocessed_sample) * 255))
|
91 |
+
|
92 |
+
"""
|
93 |
+
Show the predicted salient map and the corresponding ground-truth(GT)
|
94 |
+
"""
|
95 |
+
prediction.show()
|
96 |
+
sample["gt"].show()
|
97 |
+
```
|
98 |
|
99 |
### Downstream Use [optional]
|
100 |
|