|
from typing import Dict, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
from PIL.Image import Image |
|
from torch import Tensor |
|
from transformers.image_processing_utils import BaseImageProcessor |
|
|
|
|
|
from transformers import VideoMAEImageProcessor, ViTImageProcessor |
|
|
|
INPUT_IMAGE_SIZE = (352, 352) |
|
|
|
rgb_transform = transforms.Compose( |
|
[ |
|
transforms.Resize(INPUT_IMAGE_SIZE), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
gt_transform = transforms.ToTensor() |
|
depth_transform = transforms.Compose( |
|
[transforms.Resize(INPUT_IMAGE_SIZE), transforms.ToTensor()] |
|
) |
|
|
|
|
|
class BBSNetImageProcessor(BaseImageProcessor): |
|
model_input_names = ["bbsnet_preprocessor"] |
|
|
|
def __init__(self, testsize: Optional[int] = 352, **kwargs) -> None: |
|
super().__init__(**kwargs) |
|
self.testsize = testsize |
|
|
|
def preprocess( |
|
self, |
|
inputs: Dict[str, Image], |
|
**kwargs |
|
) -> Dict[str, Tensor]: |
|
rs = dict() |
|
if "rgb" in inputs: |
|
rs["rgb"] = rgb_transform(inputs["rgb"]).unsqueeze(0) |
|
if "gt" in inputs: |
|
rs["gt"] = gt_transform(inputs["gt"]).unsqueeze(0) |
|
if "depth" in inputs: |
|
rs["depth"] = depth_transform(inputs["depth"]).unsqueeze(0) |
|
return rs |
|
|
|
def postprocess( |
|
self, logits: Tensor, size: Tuple[int, int], **kwargs |
|
) -> np.ndarray: |
|
logits: Tensor = F.upsample( |
|
logits, size=size, mode="bilinear", align_corners=False |
|
) |
|
res: np.ndarray = logits.sigmoid().squeeze().data.cpu().numpy() |
|
res = (res - res.min()) / (res.max() - res.min() + 1e-8) |
|
return res |
|
|