--- library_name: transformers model-index: - name: EVA-Qwen2.5-1.5B-FRFR results: [] license: apache-2.0 --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B load_in_8bit: false load_in_4bit: false strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true # plugins: # - axolotl.integrations.spectrum.SpectrumPlugin # spectrum_top_fraction: 0.5 # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror # spectrum_model_name: Qwen/Qwen2.5-32B datasets: - path: datasets/deduped_not_samantha_norefusals.jsonl type: sharegpt - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl type: sharegpt - path: datasets/S2.jsonl type: sharegpt - path: datasets/Turing.jsonl type: sharegpt - path: datasets/output_sharegpt.jsonl type: sharegpt chat_template: chatml shuffle_merged_datasets: true output_dir: EVA-Qwen2.5-1.5B-FRFR sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # adapter: qlora # lora_model_dir: # lora_r: 64 # lora_alpha: 128 # lora_dropout: 0.05 # lora_target_linear: true # peft_use_dora: true wandb_project: EVA-Qwen2.5-1.5B-FRFR wandb_entity: wandb_watch: wandb_name: Unit-00 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000006 max_grad_norm: 1.5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: "unsloth" gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 saves_per_epoch: 4 save_safetensors: true save_total_limit: 8 hub_model_id: hub_strategy: debug: deepspeed: deepspeed_configs/zero3_bf16.json # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: false # fsdp_offload_params: true # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer # fsdp_activation_checkpointing: true # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT # fsdp_sharding_strategy: FULL_SHARD # fsdp_forward_prefetch: false # Added # fsdp_backward_prefetch: "BACKWARD_PRE" # Added # fsdp_backward_prefetch_limit: 1 # Added # fsdp_mixed_precision: BF16 # Added ```

# EVA-Qwen2.5-1.5B-FRFR This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.20.3