File size: 9,864 Bytes
c5f3fad
 
 
5038fce
c5f3fad
5fa9408
c5f3fad
d232ad0
 
 
 
 
 
 
 
d6813ab
d232ad0
7bfde04
d232ad0
 
 
d6813ab
 
d232ad0
 
 
 
 
 
 
 
 
 
6377d20
d232ad0
 
 
7bfde04
d232ad0
c5f3fad
 
 
 
 
 
d232ad0
8cd7869
 
7bfde04
8cd7869
d232ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6813ab
d232ad0
d6813ab
d232ad0
d6813ab
d232ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d678ef8
d232ad0
 
 
 
 
 
 
 
 
 
5fa9408
 
 
 
 
d232ad0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: apache-2.0
base_model:
- Qwen/Qwen3-8B-Base
library_name: transformers
pipeline_tag: text-ranking
---
# Qwen3-Reranker-8B

<p align="center">
    <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/>
<p>

## Highlights

The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining.

**Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks No.1 in the MTEB multilingual leaderboard (as of June 5, 2025, score 70.58), while the reranking model excels in various text retrieval scenarios.

**Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios.

**Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities.


## Model Overview

**Qwen3-Reranker-8B** has the following features:

- Model Type: Text Reranking
- Supported Languages: 100+ Languages
- Number of Paramaters: 8B
- Context Length: 32k

For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding).

## Qwen3 Embedding Series Model list

| Model Type       | Models               | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware |
|------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------|
| Text Embedding   | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28     | 32K             | 1024                | Yes         | Yes            |
| Text Embedding   | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B)   | 4B   | 36     | 32K             | 2560                | Yes         | Yes            |
| Text Embedding   | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B)   | 8B   | 36     | 32K             | 4096                | Yes         | Yes            |
| Text Reranking   | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28     | 32K             | -                   | -           | Yes            |
| Text Reranking   | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B)   | 4B   | 36     | 32K             | -                   | -           | Yes            |
| Text Reranking   | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B)   | 8B   | 36     | 32K             | -                   | -           | Yes            |

> **Note**:
> - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. 
> - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks.
> - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English.


## Usage

With Transformers versions earlier than 4.51.0, you may encounter the following error:
```
KeyError: 'qwen3'
```

### Transformers Usage

```python
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM

def format_instruction(instruction, query, doc):
    if instruction is None:
        instruction = 'Given a web search query, retrieve relevant passages that answer the query'
    output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
    return output

def process_inputs(pairs):
    inputs = tokenizer(
        pairs, padding=False, truncation='longest_first',
        return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
    )
    for i, ele in enumerate(inputs['input_ids']):
        inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
    inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
    for key in inputs:
        inputs[key] = inputs[key].to(model.device)
    return inputs

@torch.no_grad()
def compute_logits(inputs, **kwargs):
    batch_scores = model(**inputs).logits[:, -1, :]
    true_vector = batch_scores[:, token_true_id]
    false_vector = batch_scores[:, token_false_id]
    batch_scores = torch.stack([false_vector, true_vector], dim=1)
    batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
    scores = batch_scores[:, 1].exp().tolist()
    return scores

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')

model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()

token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192

prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
        
task = 'Given a web search query, retrieve relevant passages that answer the query'

queries = ["What is the capital of China?",
    "Explain gravity",
]

documents = [
    "The capital of China is Beijing.",
    "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]

pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]

# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)

print("scores: ", scores)
```

📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%.

## Evaluation

| Model                              | Param  | MTEB-R  | CMTEB-R | MMTEB-R | MLDR   | MTEB-Code | FollowIR |
|------------------------------------|--------|---------|---------|---------|--------|-----------|----------|
| **Qwen3-Embedding-0.6B**               | 0.6B   | 61.82   | 71.02   | 64.64   | 50.26  | 75.41     | 5.09     |
| Jina-multilingual-reranker-v2-base | 0.3B   | 58.22   | 63.37   | 63.73   | 39.66  | 58.98     | -0.68    |
| gte-multilingual-reranker-base                      | 0.3B   | 59.51   | 74.08   | 59.44   | 66.33  | 54.18     | -1.64    |
| BGE-reranker-v2-m3                 | 0.6B   | 57.03   | 72.16   | 58.36   | 59.51  | 41.38     | -0.01    |
| **Qwen3-Reranker-0.6B**                | 0.6B   | 65.80   | 71.31   | 66.36   | 67.28  | 73.42     | 5.41     |
| **Qwen3-Reranker-4B**                  | 4B   | **69.76** | 75.94   | 72.74   | 69.97  | 81.20     | **14.84** |
| **Qwen3-Reranker-8B**                  | 8B     | 69.02   | **77.45** | **72.94** | **70.19** | **81.22** | 8.05     |

> **Note**:  
> - Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2), MTEB(cmn, v1), MMTEB and MTEB (Code), which are MTEB-R, CMTEB-R, MMTEB-R and MTEB-Code.
> - All scores are our runs based on the top-100 candidates retrieved by dense embedding model [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B).

## Citation
If you find our work helpful, feel free to give us a cite.

```
@article{qwen3embedding,
  title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models},
  author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren},
  journal={arXiv preprint arXiv:2506.05176},
  year={2025}
}
```