File size: 6,005 Bytes
b7e17da
 
 
 
 
 
4516c4d
b7e17da
b2ddf47
 
 
 
600d6d5
b2ddf47
600d6d5
b2ddf47
 
 
b0d9cbe
b2ddf47
 
 
 
 
 
 
 
bac1154
b2ddf47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac1154
 
 
 
b2ddf47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac1154
 
b2ddf47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c88b97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
language:
- en
- zh
library_name: diffusers
pipeline_tag: text-to-image
---
<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" width="400"/>
<p>
<p align="center">
          💜 <a href="https://chat.qwen.ai/"><b>Qwen Chat</b></a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Qwen/Qwen-Image">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/models/Qwen/Qwen-Image">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/Qwen_Image.pdf">Tech Report</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://qwenlm.github.io/blog/qwen-image/">Blog</a> &nbsp&nbsp 
<br>
🖥️ <a href="https://huggingface.co/spaces/Qwen/qwen-image">Demo</a>&nbsp&nbsp | &nbsp&nbsp💬 <a href="https://github.com/QwenLM/Qwen-Image/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp🫨 <a href="https://discord.gg/CV4E9rpNSD">Discord</a>&nbsp&nbsp
</p>

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/merge3.jpg" width="1600"/>
<p>

## Introduction
We are thrilled to release **Qwen-Image**, an image generation foundation model in the Qwen series that achieves significant advances in **complex text rendering** and **precise image editing**. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.

![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/bench.png#center)

## News
- 2025.08.04: We released the [Technical Report](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/Qwen_Image.pdf) of Qwen-Image!
- 2025.08.04: We released Qwen-Image weights! Check at [huggingface](https://huggingface.co/Qwen/Qwen-Image) and [Modelscope](https://modelscope.cn/models/Qwen/Qwen-Image)!
- 2025.08.04: We released Qwen-Image! Check our [blog](https://qwenlm.github.io/blog/qwen-image) for more details!


## Quick Start

Install the latest version of diffusers
```
pip install git+https://github.com/huggingface/diffusers
```

The following contains a code snippet illustrating how to use the model to generate images based on text prompts:

```python
from diffusers import DiffusionPipeline
import torch

model_name = "Qwen/Qwen-Image"

# Load the pipeline
if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
    device = "cuda"
else:
    torch_dtype = torch.float32
    device = "cpu"

pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch_dtype)
pipe = pipe.to(device)

positive_magic = [
    "en": "Ultra HD, 4K, cinematic composition." # for english prompt,
    "zh": "超清,4K,电影级构图" # for chinese prompt,
]

# Generate image
prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition'''

negative_prompt = " "


# Generate with different aspect ratios
aspect_ratios = {
    "1:1": (1328, 1328),
    "16:9": (1664, 928),
    "9:16": (928, 1664),
    "4:3": (1472, 1140),
    "3:4": (1140, 1472)
}

width, height = aspect_ratios["16:9"]

image = pipe(
    prompt=prompt + positive_magic["en"],
    negative_prompt=negative_prompt,
    width=width,
    height=height,
    num_inference_steps=50,
    true_cfg_scale=4.0,
    generator=torch.Generator(device="cuda").manual_seed(42)
).images[0]

image.save("example.png")
```

## Show Cases

One of its standout capabilities is high-fidelity text rendering across diverse images. Whether it’s alphabetic languages like English or logographic scripts like Chinese, Qwen-Image preserves typographic details, layout coherence, and contextual harmony with stunning accuracy. Text isn’t just overlaid—it’s seamlessly integrated into the visual fabric.

![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s1.jpg#center)

Beyond text, Qwen-Image excels at general image generation with support for a wide range of artistic styles. From photorealistic scenes to impressionist paintings, from anime aesthetics to minimalist design, the model adapts fluidly to creative prompts, making it a versatile tool for artists, designers, and storytellers.

![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s2.jpg#center)

When it comes to image editing, Qwen-Image goes far beyond simple adjustments. It enables advanced operations such as style transfer, object insertion or removal, detail enhancement, text editing within images, and even human pose manipulation—all with intuitive input and coherent output. This level of control brings professional-grade editing within reach of everyday users.

![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s3.jpg#center)

But Qwen-Image doesn’t just create or edit—it understands. It supports a suite of image understanding tasks, including object detection, semantic segmentation, depth and edge (Canny) estimation, novel view synthesis, and super-resolution. These capabilities, while technically distinct, can all be seen as specialized forms of intelligent image editing, powered by deep visual comprehension.

![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s4.jpg#center)

Together, these features make Qwen-Image not just a tool for generating pretty pictures, but a comprehensive foundation model for intelligent visual creation and manipulation—where language, layout, and imagery converge.


## License Agreement

Qwen-Image is licensed under Apache 2.0. 

## Citation

We kindly encourage citation of our work if you find it useful.

```bibtex
@article{qwen-image,
    title={Qwen-Image Technical Report}, 
    author={Qwen Team},
    journal={arXiv preprint},
    year={2025}
}
```