File size: 4,023 Bytes
e20c7d1 1c4a9bf a151b75 b513149 a151b75 b513149 9414256 76f6dd3 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 b513149 a151b75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
library_name: transformers
pipeline_tag: text-generation
tags:
- glm4_moe
- AWQ
- FP16Mix
- quantization fix
- vLLM
base_model:
- zai-org/GLM-4.5-Air
base_model_relation: quantized
---
# GLM-4.5-Air-GPTQ-Int4-Int8Mix
Base model: [zai-org/GLM-4.5-Air](https://huggingface.co/zai-org/GLM-4.5-Air)
### 【vLLM Single Node with 8 GPUs Startup Command】
<i>Note: You must use `--enable-expert-parallel` to start this model, otherwise the expert tensor TP will not divide evenly. This is required even for 2 GPUs.</i>
```
CONTEXT_LENGTH=32768
VLLM_USE_MODELSCOPE=true vllm serve \
QuantTrio/GLM-4.5-Air-GPTQ-Int4-Int8Mix \
--served-model-name GLM-4.5-Air-GPTQ-Int4-Int8Mix \
--enable-expert-parallel \
--swap-space 16 \
--max-num-seqs 512 \
--max-model-len $CONTEXT_LENGTH \
--max-seq-len-to-capture $CONTEXT_LENGTH \
--gpu-memory-utilization 0.9 \
--tensor-parallel-size 8 \
--trust-remote-code \
--disable-log-requests \
--host 0.0.0.0 \
--port 8000
```
### 【Dependencies】
```
vllm==0.10.0
```
### 【Model Update Date】
```
2025-07-30
1. Initial commit
```
### 【Model Files】
| File Size | Last Updated |
|-----------|--------------|
| `67GB` | `2025-07-30` |
### 【Model Download】
```python
from huggingface_hub import snapshot_download
snapshot_download('QuantTrio/GLM-4.5-Air-GPTQ-Int4-Int8Mix', cache_dir="your_local_path")
```
### 【Overview】
# GLM-4.5
<div align="center">
<img src=https://raw.githubusercontent.com/zai-org/GLM-4.5/refs/heads/main/resources/logo.svg width="15%"/>
</div>
<p align="center">
👋 Join our <a href="https://github.com/zai-org/GLM-4.5/blob/main/resources/WECHAT.md" target="_blank"> WeChat group </a>.
<br>
📖 Read the GLM-4.5 <a href="https://z.ai/blog/glm-4.5" target="_blank"> technical blog </a>.
<br>
📍 Use the GLM-4.5 API service on the <a href="https://docs.bigmodel.cn/cn/guide/models/text/glm-4.5"> ZhipuAI Open Platform </a>.
<br>
👉 Try <a href="https://chat.z.ai" >GLM-4.5 </a> online.
</p>
## Model Introduction
The **GLM-4.5** series is a foundation model family designed specifically for agents. GLM-4.5 has **355 billion** total parameters, including **32 billion** active parameters. GLM-4.5-Air features a more compact design with **106 billion** total parameters and **12 billion** active parameters. GLM-4.5 models unify reasoning, encoding, and agent capabilities to meet the complex demands of agent-based applications.
Both GLM-4.5 and GLM-4.5-Air are hybrid reasoning models that offer two modes: a *thinking mode* for complex reasoning and tool use, and a *non-thinking mode* for instant response.
We have open-sourced the base models, hybrid reasoning models, and FP8 versions of GLM-4.5 and GLM-4.5-Air. They are released under the MIT open-source license, available for commercial use and secondary development.
In our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieved an outstanding score of **63.2**, ranking **3rd** among all proprietary and open-source models. Notably, GLM-4.5-Air maintained excellent efficiency while achieving a competitive score of **59.8**.

For more evaluation results, case studies, and technical details, please visit our [technical blog](https://z.ai/blog/glm-4.5). The full technical report will be released soon.
Model code, tool parsers, and inference parsers can be found in:
- [transformers](https://github.com/huggingface/transformers/tree/main/src/transformers/models/glm4_moe)
- [vLLM](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/glm4_moe_mtp.py)
- [SGLang](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/models/glm4_moe.py)
## Quick Start
Please refer to our [GitHub project](https://github.com/zai-org/GLM-4.5). |