Text Generation
GGUF
English
medical
Inference Endpoints
conversational
aashish1904 commited on
Commit
38faebb
·
verified ·
1 Parent(s): 3cc084d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ datasets:
6
+ - FreedomIntelligence/medical-o1-reasoning-SFT
7
+ - FreedomIntelligence/medical-o1-verifiable-problem
8
+ language:
9
+ - en
10
+ base_model:
11
+ - meta-llama/Llama-3.1-8B-Instruct
12
+ pipeline_tag: text-generation
13
+ tags:
14
+ - medical
15
+
16
+ ---
17
+
18
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
19
+
20
+
21
+ # QuantFactory/HuatuoGPT-o1-8B-GGUF
22
+ This is quantized version of [FreedomIntelligence/HuatuoGPT-o1-8B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) created using llama.cpp
23
+
24
+ # Original Model Card
25
+
26
+
27
+ <div align="center">
28
+ <h1>
29
+ HuatuoGPT-o1-8B
30
+ </h1>
31
+ </div>
32
+
33
+ <div align="center">
34
+ <a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a>
35
+ </div>
36
+
37
+ # <span>Introduction</span>
38
+ **HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.
39
+
40
+ For more information, visit our GitHub repository:
41
+ [https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1).
42
+
43
+ # <span>Model Info</span>
44
+ | | Backbone | Supported Languages | Link |
45
+ | -------------------- | ------------ | ----- | --------------------------------------------------------------------- |
46
+ | **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) |
47
+ | **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) |
48
+ | **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) |
49
+ | **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) |
50
+
51
+
52
+
53
+ # <span>Usage</span>
54
+ You can use HuatuoGPT-o1 in the same way as `Llama-3.1-8B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference:
55
+ ```python
56
+ from transformers import AutoModelForCausalLM, AutoTokenizer
57
+
58
+ model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B",torch_dtype="auto",device_map="auto")
59
+ tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-8B")
60
+
61
+ input_text = "How to stop a cough?"
62
+ messages = [{"role": "user", "content": input_text}]
63
+
64
+ inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
65
+ ), return_tensors="pt").to(model.device)
66
+ outputs = model.generate(**inputs, max_new_tokens=2048)
67
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
68
+ ```
69
+
70
+ HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as:
71
+
72
+ ```
73
+ ## Thinking
74
+ [Reasoning process]
75
+
76
+ ## Final Response
77
+ [Output]
78
+ ```
79
+
80
+ # <span>📖 Citation</span>
81
+ ```
82
+ @misc{chen2024huatuogpto1medicalcomplexreasoning,
83
+ title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
84
+ author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
85
+ year={2024},
86
+ eprint={2412.18925},
87
+ archivePrefix={arXiv},
88
+ primaryClass={cs.CL},
89
+ url={https://arxiv.org/abs/2412.18925},
90
+ }
91
+ ```
92
+
93
+
94
+
95
+