Text Generation
GGUF
English
Chinese
medical
Inference Endpoints
conversational
aashish1904 commited on
Commit
80d326f
·
verified ·
1 Parent(s): 6eed006

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: apache-2.0
5
+ datasets:
6
+ - FreedomIntelligence/medical-o1-reasoning-SFT
7
+ - FreedomIntelligence/medical-o1-verifiable-problem
8
+ language:
9
+ - en
10
+ - zh
11
+ base_model:
12
+ - Qwen/Qwen2.5-7B-Instruct
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - medical
16
+
17
+ ---
18
+
19
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
20
+
21
+
22
+ # QuantFactory/HuatuoGPT-o1-7B-GGUF
23
+ This is quantized version of [FreedomIntelligence/HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) created using llama.cpp
24
+
25
+ # Original Model Card
26
+
27
+
28
+ <div align="center">
29
+ <h1>
30
+ HuatuoGPT-o1-7B
31
+ </h1>
32
+ </div>
33
+
34
+ <div align="center">
35
+ <a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a>
36
+ </div>
37
+
38
+ # <span>Introduction</span>
39
+ **HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response.
40
+
41
+ For more information, visit our GitHub repository:
42
+ [https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1).
43
+
44
+ # <span>Model Info</span>
45
+ | | Backbone | Supported Languages | Link |
46
+ | -------------------- | ------------ | ----- | --------------------------------------------------------------------- |
47
+ | **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) |
48
+ | **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) |
49
+ | **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) |
50
+ | **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) |
51
+
52
+
53
+
54
+ # <span>Usage</span>
55
+ You can use HuatuoGPT-o1-7B in the same way as `Qwen2.5-7B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference:
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
+
59
+ model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto")
60
+ tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B")
61
+
62
+ input_text = "How to stop a cough?"
63
+ messages = [{"role": "user", "content": input_text}]
64
+
65
+ inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True
66
+ ), return_tensors="pt").to(model.device)
67
+ outputs = model.generate(**inputs, max_new_tokens=2048)
68
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
69
+ ```
70
+
71
+ HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as:
72
+
73
+ ```
74
+ ## Thinking
75
+ [Reasoning process]
76
+
77
+ ## Final Response
78
+ [Output]
79
+ ```
80
+
81
+ # <span>📖 Citation</span>
82
+ ```
83
+ @misc{chen2024huatuogpto1medicalcomplexreasoning,
84
+ title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs},
85
+ author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang},
86
+ year={2024},
87
+ eprint={2412.18925},
88
+ archivePrefix={arXiv},
89
+ primaryClass={cs.CL},
90
+ url={https://arxiv.org/abs/2412.18925},
91
+ }
92
+ ```