Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- GGUF
|
4 |
+
- iMat
|
5 |
+
- Llama3
|
6 |
+
- conversational
|
7 |
+
---
|
8 |
+
|
9 |
+
```
|
10 |
+
e88 88e d8
|
11 |
+
d888 888b 8888 8888 ,"Y88b 888 8e d88
|
12 |
+
C8888 8888D 8888 8888 "8" 888 888 88b d88888
|
13 |
+
Y888 888P Y888 888P ,ee 888 888 888 888
|
14 |
+
"88 88" "88 88" "88 888 888 888 888
|
15 |
+
b
|
16 |
+
8b,
|
17 |
+
|
18 |
+
e88'Y88 d8 888
|
19 |
+
d888 'Y ,"Y88b 888,8, d88 ,e e, 888
|
20 |
+
C8888 "8" 888 888 " d88888 d88 88b 888
|
21 |
+
Y888 ,d ,ee 888 888 888 888 , 888
|
22 |
+
"88,d88 "88 888 888 888 "YeeP" 888
|
23 |
+
|
24 |
+
PROUDLY PRESENTS
|
25 |
+
```
|
26 |
+
|
27 |
+
## experiment_1_8b-iMat-GGUF
|
28 |
+
|
29 |
+
|
30 |
+
Quantized from fp16.
|
31 |
+
* Weighted quantizations were creating using fp16 GGUF and [groups_merged-enhancedV2-TurboMini.txt](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-9432658) in 189 chunks and n_ctx=512
|
32 |
+
* This method of calculating the importance matrix showed improvements in some areas for Mistral 7b and Llama3 8b models, see above post for details
|
33 |
+
* The enhancedv2-turbomini file appends snippets from turboderp's calibration data to the standard groups_merged.txt file
|
34 |
+
|
35 |
+
For a brief rundown of iMatrix quant performance please see this [PR](https://github.com/ggerganov/llama.cpp/pull/5747)
|
36 |
+
|
37 |
+
<b>All quants are verified working prior to uploading to repo for your safety and convenience. </b>
|
38 |
+
|
39 |
+
Original model card [here](https://huggingface.co/jukofyork/Dusk-Miqu-70B/) and below
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
# **UNTESTED, probably unfit for human consumption**
|
44 |
+
|
45 |
+
1 epoch of grimulkan/LimaRP-augmented on LLaMA3-8b via unsloth on colab, using the llama-chat template. 16k context, probably.
|
46 |
+
```
|
47 |
+
model = FastLanguageModel.get_peft_model(
|
48 |
+
model,
|
49 |
+
r = 64, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
50 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
51 |
+
"gate_proj", "up_proj", "down_proj",],
|
52 |
+
lora_alpha = 16,
|
53 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
54 |
+
bias = "none", # Supports any, but = "none" is optimized
|
55 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
56 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
57 |
+
random_state = 3407,
|
58 |
+
use_rslora = False, # We support rank stabilized LoRA
|
59 |
+
loftq_config = None, # And LoftQ
|
60 |
+
)
|
61 |
+
|
62 |
+
trainer = SFTTrainer(
|
63 |
+
model = model,
|
64 |
+
tokenizer = tokenizer,
|
65 |
+
train_dataset = dataset,
|
66 |
+
dataset_text_field = "text",
|
67 |
+
max_seq_length = max_seq_length,
|
68 |
+
dataset_num_proc = 2,
|
69 |
+
packing = False, # Can make training 5x faster for short sequences.
|
70 |
+
args = TrainingArguments(
|
71 |
+
per_device_train_batch_size = 1,
|
72 |
+
gradient_accumulation_steps = 8,
|
73 |
+
warmup_steps = 5,
|
74 |
+
num_train_epochs=1,
|
75 |
+
learning_rate = 2e-4,
|
76 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
77 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
78 |
+
logging_steps = 1,
|
79 |
+
optim = "adamw_8bit",
|
80 |
+
weight_decay = 0.01,
|
81 |
+
lr_scheduler_type = "linear",
|
82 |
+
seed = 3407,
|
83 |
+
output_dir = "outputs",
|
84 |
+
),
|
85 |
+
)
|
86 |
+
```
|
87 |
+
|