File size: 22,697 Bytes
0c4bdb6
 
4b105b2
 
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
0c4bdb6
4b105b2
 
0c4bdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b105b2
 
 
 
 
 
0c4bdb6
4b105b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import torch
import gc
import numpy as np
import json

torch.cuda.empty_cache()
import torch.distributed
from dataset import AgentDatapointDataset
import os
import wandb
from lightning.pytorch.loggers import WandbLogger
from peft import get_peft_model, LoraConfig
from transformers import TrainerCallback

from transformers import BitsAndBytesConfig

# from unsloth import is_bf16_supported

# This version of qwen requires more vram
from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
from trl import SFTTrainer, SFTConfig

# This version of qwen requires less vram since is uses compiled componentsand also a fused cross entropy loss
# from model import Qwen2_5_VLForConditionalGeneration
from transformers import logging as transformers_logging
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
transformers_logging.set_verbosity_error()
import argparse
from torch.optim import AdamW
from qwen_vl_utils import process_vision_info

torch.set_float32_matmul_precision("medium")

import json


from evaluate import evaluate_model

from dataset import AgentEvalDatapointDataset, AgentDatapointDataset

# Perhaps want to add back these later
# from unsloth.models._utils import prepare_model_for_kbit_training
# from gradient_checkpointing import patch_unsloth_smart_gradient_checkpointing


def train_collate_fn(examples, processor):

    texts = [
        processor.apply_chat_template(example["messages"], tokenize=False)
        for example in examples
    ]

    image_inputs = [process_vision_info(example["messages"])[0] for example in examples]

    model_inputs = processor(
        text=texts, images=image_inputs, return_tensors="pt", padding=True
    )

    labels = model_inputs["input_ids"].clone()

    # mask padding tokens in labels
    labels[labels == processor.tokenizer.pad_token_id] = -100

    if isinstance(processor, Qwen2_5_VLProcessor):
        image_tokens = [151652, 151653, 151655]
    else:
        image_tokens = [
            processor.tokenizer.convert_tokens_to_ids(processor.image_token)
        ]

    # mask image token IDs in the labels
    for image_token_id in image_tokens:
        labels[labels == image_token_id] = -100

    # Return a dictionary instead of a tuple
    return {
        "input_ids": model_inputs["input_ids"],
        "attention_mask": model_inputs["attention_mask"],
        "pixel_values": model_inputs["pixel_values"],
        "image_grid_thw": model_inputs["image_grid_thw"],
        "labels": labels,
    }


def _wrap_fast_inference(generate, device_type, dtype, model):
    # Wraps inference with bfloat16 / float16
    @torch.inference_mode
    def _fast_generate(*args, **kwargs):
        # For num_logits_to_keep
        # kwargs["num_logits_to_keep"] = 1

        # Remove token_type_ids
        kwargs.pop("token_type_ids", None)

        # Check pad_token
        model_eos_token_id = getattr(model.config, "eos_token_id", None)
        if model_eos_token_id is not None and hasattr(model_eos_token_id, "__iter__"):
            model_eos_token_id = model_eos_token_id[0]

        kwargs["pad_token_id"] = kwargs.pop("pad_token_id", model_eos_token_id)

        try:
            kwargs["pixel_values"] = kwargs["pixel_values"].to(model.dtype)
        except:
            pass

        # Autocasted
        with torch.autocast(device_type=device_type, dtype=dtype):
            output = generate(*args, **kwargs)
        pass
        return output

    pass
    return _fast_generate


pass


def for_inference(model):
    model.gradient_checkpointing = False
    model.training = False

    for name, module in model.named_modules():
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = False
        if hasattr(module, "training"):
            module.training = False
    pass

    dtype = model.config.torch_dtype
    if type(dtype) is str:
        if dtype == "float16":
            dtype = torch.float16
        elif dtype == "bfloat16":
            dtype = torch.bfloat16
    pass
    device_type = model.device.type

    # Wrap model.generate
    if model.generate.__name__ != "_fast_generate":
        model._unwrapped_old_generate = model.generate
        model.generate = _wrap_fast_inference(model.generate, device_type, dtype, model)
    pass

    # Patch tokenizer to pad to the left
    internal_model = model
    while hasattr(internal_model, "model"):
        if hasattr(internal_model, "_saved_temp_tokenizer"):

            internal_model._saved_temp_tokenizer.tokenizer.padding_side = "left"
        pass
        internal_model = internal_model.model
    pass
    if hasattr(internal_model, "_saved_temp_tokenizer"):
        internal_model._saved_temp_tokenizer.tokenizer.padding_side = "left"
    pass

    # Also disable training for embeddings for NEFTune
    if hasattr(model, "get_input_embeddings"):
        embeddings = model.get_input_embeddings()
        if hasattr(embeddings, "training"):
            embeddings.training = False
    pass
    if hasattr(model, "get_output_embeddings"):
        embeddings = model.get_output_embeddings()
        if hasattr(embeddings, "training"):
            embeddings.training = False
    pass

    return model


def for_training(model, use_gradient_checkpointing=True):
    model.train()
    model.gradient_checkpointing = use_gradient_checkpointing
    model.training = True

    for name, module in model.named_modules():
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = use_gradient_checkpointing
        if hasattr(module, "training"):
            module.training = True
    pass

    # Also revert model.generate
    if hasattr(model, "_unwrapped_old_generate"):
        model.generate = model._unwrapped_old_generate
        del model._unwrapped_old_generate
    pass

    # Patch tokenizer to pad to the right
    internal_model = model
    while hasattr(internal_model, "model"):
        if hasattr(internal_model, "_saved_temp_tokenizer"):
            internal_model._saved_temp_tokenizer.tokenizer.padding_side = "right"
        pass
        internal_model = internal_model.model
    pass
    if hasattr(internal_model, "_saved_temp_tokenizer"):
        internal_model._saved_temp_tokenizer.tokenizer.padding_side = "right"
    pass

    # Also re-enable training for embeddings for NEFTune
    if hasattr(model, "get_input_embeddings"):
        embeddings = model.get_input_embeddings()
        if hasattr(embeddings, "training"):
            embeddings.training = True
    pass
    if hasattr(model, "get_output_embeddings"):
        embeddings = model.get_output_embeddings()
        if hasattr(embeddings, "training"):
            embeddings.training = True
    pass

    return model


class CustomTrainingCallback(TrainerCallback):
    def __init__(self, trainer, eval_epoch_interval=2):
        self.trainer = trainer
        self.eval_epoch_interval = eval_epoch_interval
        self.best_test_accuracy = 0.0
        self.best_test_epoch = 0
        self.best_metrics = {
            'test_accuracy': 0.0,
            'train_accuracy': 0.0,
            'epoch': 0,
            'global_step': 0
        }

    def save_best_metrics(self, output_dir):
        """Save best metrics to a file in the checkpoint directory"""
        metrics_file = os.path.join(output_dir, 'best_metrics.json')
        with open(metrics_file, 'w') as f:
            json.dump(self.best_metrics, f, indent=4)
        print(f"Saved best metrics to {metrics_file}")

    def on_log(self, args, state, control, logs=None, **kwargs):
        """Log metrics at each logging step"""
        if logs is not None:
            # Ensure wandb is initialized
            import wandb

            if not wandb.run:
                wandb.init(
                    project="qwen-vl-trainer",
                    reinit=True,
                    name=f"{os.environ.get('RANK', '0')}-training",
                    group=os.environ.get("WANDB_RUN_GROUP", None),
                )

            # Log all metrics from the logs dictionary
            step = state.global_step if hasattr(state, "global_step") else 0

            # Extract and log training metrics
            log_data = {}
            for key, value in logs.items():
                # Prefix training metrics to differentiate from eval metrics
                if key not in ["eval_loss", "epoch", "learning_rate"]:
                    log_data[f"train/{key}"] = value
                else:
                    log_data[key] = value

            wandb.log(log_data, step=step)

    def on_epoch_end(self, args, state, control, **kwargs):
        print(f"Epoch {state.epoch + 1} ended")
        was_training = self.trainer.model.training
        for_inference(self.trainer.model)
        self.trainer.model.eval()

        if (state.epoch + 1) % self.eval_epoch_interval == 0 and state.epoch > 4:
            # Get test accuracy
            test_accuracy = self.trainer.evaluate_step(dataset=self.trainer.eval_dataset, split="test")
            train_accuracy = self.trainer.evaluate_step(dataset=self.trainer.train_dataset_eval, split="train")
            
            print(f"Test accuracy: {test_accuracy:.4f}, Train accuracy: {train_accuracy:.4f}")
         
            # Update best test accuracy if current is better
            if test_accuracy > self.best_test_accuracy:
                self.best_test_accuracy = test_accuracy
                self.best_test_epoch = state.epoch + 1
                
                # Update best metrics dictionary
                self.best_metrics.update({
                    'best_test_accuracy': float(test_accuracy),
                    'train_accuracy': float(train_accuracy),
                    'epoch': int(state.epoch + 1),
                    'global_step': int(state.global_step)
                })
                
                # Save best metrics to file
                self.save_best_metrics(args.output_dir)
                
                # Log to wandb
                
                print(f"\nNew best test accuracy: {self.best_test_accuracy:.4f} at epoch {self.best_test_epoch}")

        if was_training:
            for_training(self.trainer.model)
            self.trainer.model.train()


class CustomSFTTrainer(SFTTrainer):
    def __init__(
        self,
        model,
        tokenizer,
        processor,
        data_collator,
        train_dataset=None,
        train_dataset_eval=None,
        eval_dataset=None,
        eval_epoch_interval=2,
        args=None,
    ):
        #         train_dataset_eval=train_dataset_eval,
        # train_dataset=train_dataset,
        # eval_dataset=test_dataset,
        self.custom_callback = CustomTrainingCallback(
            self, eval_epoch_interval=eval_epoch_interval
        )
        callbacks = [self.custom_callback]

        super().__init__(
            model=model,
            tokenizer=tokenizer,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            callbacks=callbacks,
            args=args,
        )
        self.eval_dataset = eval_dataset
        self.train_dataset_eval = train_dataset_eval
        self.state = type("State", (), {"global_step": 0})()
        self.processor = processor

    def evaluate_step(self, dataset, split):
        print(f"Evaluating {split} dataset")
        try:
            device = self.model.device

            # The correct signature is: evaluate_model(model, processor, dataset, split, verbose=False)
            accuracy = evaluate_model(self.model, self.processor, dataset, split)

            # Initialize wandb if not already initialized
            import wandb

            if not wandb.run:
                wandb.init(
                    project="qwen-vl-trainer",
                    reinit=True,
                    name=f"{os.environ.get('RANK', '0')}-evaluation",
                    group=os.environ.get("WANDB_RUN_GROUP", None),
                )

            wandb.log(
                {
                    f"{split}/accuracy": accuracy,
                }
            )

            return accuracy  # Return the accuracy value

        except Exception as e:
            logger.error(f"Error evaluating: {e}")
            raise

    def cleanup(self):
        """Cleanup method to ensure wandb runs are properly closed"""
        import wandb

        if wandb.run:
            wandb.finish()


def load_model(MODEL_ID: str, USE_QLORA: bool, training_args):

    # patch_unsloth_smart_gradient_checkpointing()
    # Configure more aggressive quantization
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16,
    )

    # More aggressive LoRA config
    lora_config = LoraConfig(
        r=200,  # Increase rank for more expressiveness
        lora_alpha=50,  # Higher scaling factor
        lora_dropout=0.001,  # Moderate dropout
        bias="lora_only",
        target_modules=[
            "qkv_proj",
            "o_proj",
            "gate_up_proj",
            "down_proj",
            "gate_proj",
            "up_proj",
            "down_proj",
            "fc1",
            "fc2",
            "mlp.0",
            "mlp.2",
        ],
        task_type="CAUSAL_LM",
        inference_mode=False,
        modules_to_save=None,
    )

    # Clear memory before model load
    torch.cuda.empty_cache()
    gc.collect()

    # Load DeepSpeed config
    with open(training_args.deepspeed, "r") as f:
        ds_config = json.load(f)

    # Set is_deepspeed_zero3_enabled flag for ZeRO-3
    is_deepspeed_zero3_enabled = (
        ds_config.get("zero_optimization", {}).get("stage", 0) == 3
    )

    # Pass DeepSpeed configuration to from_pretrained
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        MODEL_ID,
        # quantization_config=bnb_config if USE_QLORA else None,  # Use the config
        torch_dtype=torch.bfloat16,
        # device_map=None,  # Let DeepSpeed handle device mapping
        use_cache=False,
        attn_implementation="flash_attention_2",
    )

    # Reset generation config to avoid warnings
    from transformers import GenerationConfig

    model.generation_config = GenerationConfig.from_model_config(model.config)
    # Ensure no conflicting generation parameters
    model.generation_config.temperature = None
    model.generation_config.top_p = None
    model.generation_config.top_k = None
    model.generation_config.early_stopping = False

    processor = Qwen2_5_VLProcessor.from_pretrained(MODEL_ID)

    model.enable_input_require_grads()  # unsloth added this prior to loading peft
    model = get_peft_model(model, lora_config)
    model.gradient_checkpointing_enable()

    model.config.use_cache = False
    model.config.pretraining_tp = 1

    # More aggressive gradient checkpointing
    model.config.gradient_checkpointing = True
    model.config.use_reentrant = False
    model.config.gradient_checkpointing_kwargs = {
        "use_reentrant": False,
        "checkpoint_every_n_layers": 1,
        "offload_to_cpu": True,
    }

    return model, processor


def train(args):
    # Set CUDA device explicitly based on local_rank
    if args.local_rank != -1:
        torch.cuda.set_device(args.local_rank)

        # Initialize process group with the correct device
        if not torch.distributed.is_initialized():
            # Get world size from environment if available
            world_size = int(os.environ.get("WORLD_SIZE", torch.cuda.device_count()))
            rank = int(os.environ.get("RANK", args.local_rank))
            print(
                f"Initializing process group with rank={rank}, world_size={world_size}"
            )

            try:
                torch.distributed.init_process_group(
                    backend="nccl",
                    init_method="env://",
                    world_size=world_size,
                    rank=rank,
                )
                print(f"Successfully initialized process group for rank {rank}")
            except Exception as e:
                print(f"Could not initialize process group: {e}")

    # Remove memory management env vars that might interfere with DeepSpeed
    os.environ.pop("PYTORCH_CUDA_ALLOC_CONF", None)
    os.environ.pop("MAX_JOBS", None)
    os.environ.pop("CUDA_LAUNCH_BLOCKING", None)

    # Set up DeepSpeed config path first
    ds_config_path = "deepspeed_config.json"

    # Set up wandb configuration
    os.environ["WANDB_MODE"] = "online"

    # Create a unique timestamp for this training run
    import datetime

    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    run_id = timestamp
    os.environ["WANDB_RUN_GROUP"] = f"qwen_training_{run_id}"

    # Create a timestamped output directory
    timestamped_output_dir = os.path.join(args.output_dir, f"run_{timestamp}")
    os.makedirs(timestamped_output_dir, exist_ok=True)
    print(f"Model checkpoints will be saved to: {timestamped_output_dir}")

    # Configure wandb properly for Trainer
    os.environ["WANDB_PROJECT"] = "qwen-vl-trainer"
    os.environ["WANDB_LOG_MODEL"] = "end"  # Changed from "true" to "end"
    os.environ["WANDB_WATCH"] = "all"  # Monitor all gradients and parameters
    os.environ["WANDB_NAME"] = f"run_{timestamp}_rank{os.environ.get('RANK', '0')}"

    # Initialize wandb only once at the beginning for the main process
    if args.local_rank <= 0:  # Only initialize on rank 0 or single GPU
        import wandb

        wandb.init(
            project="qwen-vl-trainer",
            name=f"transformer_training_{timestamp}",
            group=os.environ.get("WANDB_RUN_GROUP"),
            # Important: we're logging the model as an artifact
            settings=wandb.Settings(_disable_stats=True, _disable_meta=True),
        )
        # Log config information
        wandb.config.update(
            {
                "model_id": args.model_id,
                "use_qlora": args.use_qlora,
                "output_dir": timestamped_output_dir,
            }
        )
        print(f"Initialized wandb with run ID: {wandb.run.id}")

    # Create SFTConfig with DeepSpeed config before loading the model
    training_args = SFTConfig(
        per_device_train_batch_size=1,  # Equivalent to train_micro_batch_size_per_gpu
        gradient_accumulation_steps=2,
        logging_steps=1,  # Log every step
        logging_strategy="steps",  # Log based on steps
        log_level="info",
        num_train_epochs=2000,  # Set to desired number of epochs
        # eval_steps=100,
        bf16=True,
        optim="adamw_8bit",
        lr_scheduler_type="linear",
        seed=3407,
        output_dir=timestamped_output_dir,  # Use timestamped directory
        overwrite_output_dir=True,
        report_to="wandb",  # Explicitly report to wandb
        remove_unused_columns=False,
        dataset_text_field="",
        dataset_kwargs={"skip_prepare_dataset": True},
        dataset_num_proc=4,
        max_seq_length=800000,
        save_strategy="epoch",
        evaluation_strategy="no",
        save_total_limit=2000,
        deepspeed=ds_config_path,  # Pass the DeepSpeed config
    )

    # Dynamically set devices based on availability
    num_gpus = torch.cuda.device_count()
    devices = list(range(num_gpus)) if num_gpus > 0 else None

    # Pass training args to load_model function
    model, processor = load_model(args.model_id, args.use_qlora, training_args)
    # Train dataset
    train_dataset = AgentDatapointDataset(split="train", num_samples=args.train_size)
    # Eval datasets
    test_dataset = AgentEvalDatapointDataset(split="test", num_samples=args.test_size)
    train_dataset_eval = AgentEvalDatapointDataset(split="train", num_samples=args.train_size)
    for_training(model)

    trainer = CustomSFTTrainer(
        model=model,
        processor=processor,
        tokenizer=processor.tokenizer,
        data_collator=lambda examples: train_collate_fn(examples, processor),
        train_dataset_eval=train_dataset_eval,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        args=training_args,
    )

    training_stats = trainer.train()
    logger.info("Training completed.")
    print(f"Training Statistics: {training_stats}")

    # Save the final model explicitly with timestamp
    final_model_path = os.path.join(timestamped_output_dir, "final_model")
    if args.local_rank <= 0:  # Only save on rank 0 or single GPU
        print(f"Saving final model to {final_model_path}")
        trainer.save_model(final_model_path)
        print(f"Final model saved to {final_model_path}")
        # Also save the processor
        processor.save_pretrained(final_model_path)

        # Log the final model to wandb
    #    import wandb
    #    if wandb.run:
    #        model_artifact = wandb.Artifact(
    #            name=f"model_{timestamp}",
    #            type="model",
    #            description=f"Final trained model from run {timestamp}"
    #        )
    #        model_artifact.add_dir(final_model_path)
    #        wandb.log_artifact(model_artifact)
    #        print(f"Final model logged to wandb as artifact: model_{timestamp}")
    #
    #     print(f"Final model saved to {final_model_path}")

    # Ensure proper cleanup of wandb
    trainer.cleanup()

    # Final cleanup for the main process
    if args.local_rank <= 0:  # Only finalize on rank 0 or single GPU
        import wandb

        if wandb.run:
            print("Finalizing main wandb run...")
            wandb.finish()

    print("Training process completed successfully.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Training configuration")
    parser.add_argument(
        "--model_id",
        type=str,
        default="Qwen/Qwen2.5-VL-7B-Instruct",
        help="Model ID to use",
    )
    parser.add_argument(
        "--use_qlora", type=bool, default=True, help="Whether to use QLoRA"
    )
    parser.add_argument(
        "--output_dir", type=str, default="checkpoints_27feb", help="Output directory"
    )
    # Add local_rank argument for DeepSpeed
    parser.add_argument(
        "--local_rank", type=int, default=-1, help="Local rank for distributed training"
    )
    parser.add_argument(
        "--train_size", type=int, default=10000000, help="Number of training samples"
    )
    parser.add_argument(
        "--test_size", type=int, default=10000000, help="Number of test samples"
    )
    args = parser.parse_args()
    train(args)