--- library_name: peft tags: - generated_from_trainer base_model: Davlan/mT5_base_yoruba_adr model-index: - name: yoruba-diacritics-quantized results: [] pipeline_tag: text2text-generation --- # yoruba-diacritics-quantized This model is a fine-tuned version of [Davlan/mT5_base_yoruba_adr](https://huggingface.co/Davlan/mT5_base_yoruba_adr) on a version of [Niger-Volta-LTI](https://github.com/Niger-Volta-LTI/yoruba-adr), provided by Bunmie-e on [huggingface](https://huggingface.co/datasets/bumie-e/Yoruba-diacritics-vs-non-diacritics). ## Model description The fine-tuning was performed using the PEFT-LoRa technique, aiming to improve the model's performance on tasks like diacritization restoration and generation. ## Key Features: - **Base model:** `mT5_base_yoruba_adr` pre-trained on Yoruba text - **Fine-tuned dataset:** Yoruba diacritics dataset from `bumie-e/Yoruba-diacritics-vs-non-diacritics` - **Fine-tuning technique:** PEFT-LoRa ## Potential Applications: - Diacritization restoration in Yoruba text - Generation of Yoruba text with correct diacritics - Natural language processing tasks for Yoruba language ## Code for Testing: ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer config = PeftConfig.from_pretrained("Professor/yoruba-diacritics-quantized") model = AutoModelForSeq2SeqLM.from_pretrained("Davlan/mT5_base_yoruba_adr") model = PeftModel.from_pretrained(model, "Professor/yoruba-diacritics-quantized") tokenizer = AutoTokenizer.from_pretrained("Davlan/mT5_base_yoruba_adr") inputs = tokenizer( "Mo ti so fun bobo yen sha, aaro la wa bayi", return_tensors="pt", ) device = "cpu" # use your GPU if you have model.to(device) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=100) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)) ``` ## Intended uses & limitations More information coming ## Training and evaluation data More information coming ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results coming soon. ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0