Update simple_lm.pth
Browse files- simple_lm.pth +73 -0
simple_lm.pth
CHANGED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Define a simple LSTM-based language model
|
8 |
+
class SimpleLM(nn.Module):
|
9 |
+
def __init__(self, vocab_size, embedding_dim, hidden_dim):
|
10 |
+
super(SimpleLM, self).__init__()
|
11 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
12 |
+
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
13 |
+
self.linear = nn.Linear(hidden_dim, vocab_size)
|
14 |
+
|
15 |
+
def forward(self, x, hidden):
|
16 |
+
embedded = self.embedding(x)
|
17 |
+
output, hidden = self.lstm(embedded, hidden)
|
18 |
+
output = self.linear(output)
|
19 |
+
return output, hidden
|
20 |
+
|
21 |
+
# Define a custom dataset class
|
22 |
+
class CustomDataset(Dataset):
|
23 |
+
def __init__(self, data_path):
|
24 |
+
self.data = json.load(open(data_path, 'r'))
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.data)
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
text = self.data[idx]
|
31 |
+
return torch.tensor(text, dtype=torch.long)
|
32 |
+
|
33 |
+
# Define training parameters
|
34 |
+
vocab_size = 10000 # Example vocabulary size
|
35 |
+
embedding_dim = 128
|
36 |
+
hidden_dim = 256
|
37 |
+
batch_size = 32
|
38 |
+
num_epochs = 10
|
39 |
+
|
40 |
+
# Initialize the LM
|
41 |
+
lm = SimpleLM(vocab_size, embedding_dim, hidden_dim)
|
42 |
+
|
43 |
+
# Load data
|
44 |
+
dataset = CustomDataset('training_data.json')
|
45 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
46 |
+
|
47 |
+
# Define loss function and optimizer
|
48 |
+
criterion = nn.CrossEntropyLoss()
|
49 |
+
optimizer = optim.Adam(lm.parameters(), lr=0.001)
|
50 |
+
|
51 |
+
# Training loop
|
52 |
+
for epoch in range(num_epochs):
|
53 |
+
total_loss = 0
|
54 |
+
for batch in dataloader:
|
55 |
+
optimizer.zero_grad()
|
56 |
+
input_data = batch[:, :-1] # Input sequence
|
57 |
+
target = batch[:, 1:] # Target sequence shifted by one
|
58 |
+
hidden = None
|
59 |
+
|
60 |
+
output, hidden = lm(input_data, hidden)
|
61 |
+
output = output.view(-1, vocab_size)
|
62 |
+
target = target.view(-1)
|
63 |
+
|
64 |
+
loss = criterion(output, target)
|
65 |
+
loss.backward()
|
66 |
+
optimizer.step()
|
67 |
+
|
68 |
+
total_loss += loss.item()
|
69 |
+
|
70 |
+
print(f'Epoch {epoch + 1}, Loss: {total_loss / len(dataloader)}')
|
71 |
+
|
72 |
+
# Save the trained LM
|
73 |
+
torch.save(lm.state_dict(), 'simple_lm.pth')
|