Update README.md
Browse files
README.md
CHANGED
@@ -4,10 +4,6 @@ language:
|
|
4 |
license: apache-2.0
|
5 |
library_name: transformers
|
6 |
tags:
|
7 |
-
- planning
|
8 |
-
- code
|
9 |
-
- policy control
|
10 |
-
- parsing
|
11 |
- python
|
12 |
- java
|
13 |
- cpp
|
@@ -15,7 +11,10 @@ tags:
|
|
15 |
- function calling
|
16 |
- unit tests
|
17 |
- causalLM
|
18 |
-
- codeLLAMA
|
|
|
|
|
|
|
19 |
- instruction_tuned
|
20 |
- basemodel
|
21 |
- pytorch
|
@@ -26,82 +25,71 @@ metrics:
|
|
26 |
- accuracy
|
27 |
pipeline_tag: text-generation
|
28 |
widget:
|
29 |
-
- text: '<function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center
|
30 |
-
= [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/
|
31 |
-
sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for
|
32 |
-
polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords)
|
33 |
-
for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center,
|
34 |
-
zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster
|
35 |
-
= MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for
|
36 |
-
coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates:
|
37 |
-
{coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return
|
38 |
-
output_html_path</function_code><question>Document the python code above giving
|
39 |
-
function description ,parameters and return type and example how to call the function</question><doc>'
|
40 |
example_title: example
|
41 |
---
|
42 |
# pip-library-etl-1.3b
|
43 |
|
44 |
-
[pipableAi](https://www.
|
45 |
|
46 |
-
[colab_notebook](https://colab.research.google.com/drive/
|
47 |
|
48 |
-
[pip
|
49 |
|
50 |
-
[linkedin_post](
|
51 |
|
52 |
-
|
53 |
|
54 |
-
A 1.3 bn code documentation model that outperforms most models on documenting codes and making your in-house libs ready for LLM and RAG pipelines.
|
55 |
-
We have also open sourced a [pip library_etl](https://github.com/PipableAI/pip-library-etl.git) for the same, together the lib and model can turn your codebase to functional parse tree ready to be consumed by LLMs to execute complex tasks.
|
56 |
-
This model is also capable of generating SQL queries with accuracies on par with those of [pip-sql-1.3b](https://huggingface.co/PipableAI/pip-sql-1.3b), with additional capabilities of providing extra examples, instructions ,and column descriptions as context.
|
57 |
-
This is a further trained version of pip-sql-1.3b and performance comparable to GPT.
|
58 |
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
|
65 |
-
## License
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
### NOTE:
|
72 |
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
from pip_library_etl import PipEtl
|
78 |
|
79 |
-
|
80 |
-
```
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
{
|
86 |
-
"model_name": "PipableAI/pip-library-etl-1.3b",
|
87 |
-
"prompt": "prompt",
|
88 |
-
"max_new_tokens": "400"
|
89 |
-
}
|
90 |
-
```
|
91 |
|
92 |
-
```bash
|
93 |
-
curl -X 'POST' \
|
94 |
-
'https://playground.pipable.ai/infer' \
|
95 |
-
-H 'accept: application/json' \
|
96 |
-
-H 'Content-Type: application/x-www-form-urlencoded' \
|
97 |
-
-d 'model_name=PipableAI%2Fpip-library-etl-1.3b&prompt="YOUR PROMPT"&max_new_tokens=400'
|
98 |
-
```
|
99 |
|
100 |
-
Alternatively, you can directly access UI endpoint at https://playground.pipable.ai/docs#/default/infer_infer_post.
|
101 |
|
102 |
### Library use
|
103 |
|
104 |
-
For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pip
|
105 |
|
106 |
Here's a brief overview of what can be achieved using the PipEtl library:
|
107 |
|
@@ -110,7 +98,8 @@ Here's a brief overview of what can be achieved using the PipEtl library:
|
|
110 |
- `Module Documentation` : The generate_module_docstrings method allows for generating documentation for all methods and functions within a given module or package. This capability streamlines the documentation process, especially for large codebases with numerous functions.
|
111 |
- `SQL Query Generation` : Users can leverage the generate_sql method to automatically generate SQL queries based on provided schemas and questions. This functionality simplifies the process of creating SQL queries, particularly for data-related tasks.
|
112 |
|
113 |
-
For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/
|
|
|
114 |
|
115 |
|
116 |
### Installation
|
@@ -120,412 +109,7 @@ pip install transformers
|
|
120 |
```
|
121 |
|
122 |
### Prompt
|
123 |
-
```python
|
124 |
-
prompt = f"""<example_response>{--question , --query}</example_response><function_code>{code}</function_code>
|
125 |
-
<question>Give one line description of the python code above in natural language.</question>
|
126 |
-
<doc>"""
|
127 |
-
|
128 |
-
prompt = f"""<example_response>{example of some --question: , --query}</example_response><schema>{schema with cols described}</schema>
|
129 |
-
<question>Write a sql query to ....</question>
|
130 |
-
<sql>"""
|
131 |
-
```
|
132 |
-
|
133 |
-
### PyTorch
|
134 |
-
```python
|
135 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
136 |
-
device = "cuda"
|
137 |
-
model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-library-etl-1.3b").to(device)
|
138 |
-
tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-library-etl-1.3b")
|
139 |
-
prompt = f"""
|
140 |
-
<example_response>
|
141 |
-
--code:def divide_by_two(x: float) -> float: return x / 2
|
142 |
-
--question:Document the python code above giving function description ,parameters and return type and example on how to call the function
|
143 |
-
--doc:
|
144 |
-
Description: This function divides a given number by 2.
|
145 |
-
Parameters:
|
146 |
-
- x (float): The input value to be divided by 2.
|
147 |
-
Returns:
|
148 |
-
- float: The result of x divided by 2.
|
149 |
-
Example:
|
150 |
-
divide_by_two(1.0)
|
151 |
-
</example_response>
|
152 |
-
<function_code>
|
153 |
-
def download_file(shared_url, destination):
|
154 |
-
try:
|
155 |
-
if not shared_url.startswith("https://drive.google.com"):
|
156 |
-
raise ValueError("Please provde a valid google drive link.")
|
157 |
-
file_id = shared_url.split("/d/")[1]
|
158 |
-
file_id = file_id.split("/")[0]
|
159 |
-
url = f"https://drive.google.com/uc?id={file_id}"
|
160 |
-
gdown.download(url, destination, quiet=False)
|
161 |
-
except Exception as e:
|
162 |
-
print(f"Error downloading file from Google Drive as {e}")
|
163 |
-
raise e
|
164 |
-
</function_code>
|
165 |
-
<instructions>
|
166 |
-
1. In the examples while calling function use the name mentioned after `def ` in the above function_code.
|
167 |
-
2. In the generated docs use valid python type hints as per PEP 484.
|
168 |
-
</instructions>
|
169 |
-
<question>Document the python code above giving function description ,parameters and return type and example how to call the function.</question>
|
170 |
-
<doc>
|
171 |
-
"""
|
172 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
173 |
-
outputs = model.generate(**inputs, max_new_tokens=450)
|
174 |
-
doc = (
|
175 |
-
tokenizer.decode(outputs[0], skip_special_tokens=True)
|
176 |
-
.split("<doc>")[-1]
|
177 |
-
.split("</doc>")[0]
|
178 |
-
)
|
179 |
-
doc = (
|
180 |
-
doc.replace("<p>", "")
|
181 |
-
.replace("</p>", "")
|
182 |
-
.replace("<function_description>", "")
|
183 |
-
.replace("</function_description>", "")
|
184 |
-
)
|
185 |
-
print(doc)
|
186 |
-
```
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
## Examples
|
191 |
-
|
192 |
-
### 1. Code Documentation
|
193 |
-
### prompt
|
194 |
-
```python
|
195 |
-
prompt ='''<example_response>
|
196 |
-
--code:def divide_by_two(x: float) -> float: return x / 2
|
197 |
-
--question:Document the python code above giving function description ,parameters and return type and example on how to call the function
|
198 |
-
--doc:
|
199 |
-
Description: This function divides a given number by 2.
|
200 |
-
Parameters:
|
201 |
-
- x (float): The input value to be divided by 2.
|
202 |
-
Returns:
|
203 |
-
- float: The result of x divided by 2.
|
204 |
-
Example:
|
205 |
-
divide_by_two(1.0)
|
206 |
-
</example_response>
|
207 |
-
<function_code>def _plot_bounding_polygon(
|
208 |
-
polygons_coordinates, output_html_path="bounding_polygon_map.html"
|
209 |
-
):
|
210 |
-
# Create a Folium map centered at the average coordinates of all bounding boxes
|
211 |
-
map_center = [
|
212 |
-
sum(
|
213 |
-
[
|
214 |
-
coord[0]
|
215 |
-
for polygon_coords in polygons_coordinates
|
216 |
-
for coord in polygon_coords
|
217 |
-
]
|
218 |
-
)
|
219 |
-
/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),
|
220 |
-
sum(
|
221 |
-
[
|
222 |
-
coord[1]
|
223 |
-
for polygon_coords in polygons_coordinates
|
224 |
-
for coord in polygon_coords
|
225 |
-
]
|
226 |
-
)
|
227 |
-
/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),
|
228 |
-
]
|
229 |
-
|
230 |
-
my_map = folium.Map(location=map_center, zoom_start=12)
|
231 |
-
|
232 |
-
# Add each bounding polygon to the map
|
233 |
-
for polygon_coords in polygons_coordinates:
|
234 |
-
folium.Polygon(
|
235 |
-
locations=polygon_coords,
|
236 |
-
color="blue",
|
237 |
-
fill=True,
|
238 |
-
fill_color="blue",
|
239 |
-
fill_opacity=0.2,
|
240 |
-
).add_to(my_map)
|
241 |
-
|
242 |
-
# Add bounding boxes as markers to the map
|
243 |
-
marker_cluster = MarkerCluster().add_to(my_map)
|
244 |
-
|
245 |
-
for polygon_coords in polygons_coordinates:
|
246 |
-
for coord in polygon_coords:
|
247 |
-
folium.Marker(
|
248 |
-
location=[coord[0], coord[1]], popup=f"Coordinates: {coord}"
|
249 |
-
).add_to(marker_cluster)
|
250 |
-
|
251 |
-
# Add draw control to allow users to draw additional polygons
|
252 |
-
draw = Draw(export=True)
|
253 |
-
draw.add_to(my_map)
|
254 |
-
|
255 |
-
# Save the map as an HTML file
|
256 |
-
my_map.save(output_html_path)
|
257 |
-
|
258 |
-
return output_html_path
|
259 |
-
</function_code>
|
260 |
-
<instructions>
|
261 |
-
1. In the examples while calling function use the name mentioned after `def ` in the above function_code.
|
262 |
-
2. In the generated docs use valid python type hints as per PEP 484.
|
263 |
-
</instructions>
|
264 |
-
<question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'''
|
265 |
-
```
|
266 |
-
|
267 |
-
### Response
|
268 |
-
```txt
|
269 |
-
Description:This function generates a map of the bounding polygons and saves it as an HTML file.
|
270 |
-
Parameters:
|
271 |
-
- polygons_coordinates (list of lists of tuples): A list of lists of tuples representing the coordinates of the polygons. Each polygon is a list of coordinates.
|
272 |
-
- output_html_path (str, optional): The path where the HTML file should be saved. Defaults to "bounding_polygon_map.html".
|
273 |
-
Returns:
|
274 |
-
- str: The path to the saved HTML file.
|
275 |
-
Example:
|
276 |
-
To call the function, use the following code:
|
277 |
-
plot_bounding_polygon([[(0, 0), (1, 0), (1, 1), (0, 1)], [(2, 2), (3, 2), (3, 3), (2, 3)]], "my_map.html").
|
278 |
-
```
|
279 |
-
|
280 |
-
|
281 |
-
### 2. SQL Generation
|
282 |
-
### prompt
|
283 |
-
```python
|
284 |
-
prompt = """Generate a simple SQL query from the schema mentioned for the following question.
|
285 |
-
<schema>
|
286 |
-
CREATE TABLE department (
|
287 |
-
Department_ID number, -- Unique identifier for the department
|
288 |
-
Name text, -- Name of the department
|
289 |
-
Creation text, -- Date of creation or establishment
|
290 |
-
Ranking number, -- Ranking of the department
|
291 |
-
Budget_in_Billions number, -- Budget of the department in billions
|
292 |
-
Num_Employees number -- Number of employees in the department
|
293 |
-
);
|
294 |
-
|
295 |
-
CREATE TABLE head (
|
296 |
-
head_ID number, -- Unique identifier for the head
|
297 |
-
name text, -- Name of the head
|
298 |
-
born_state text, -- State where the head was born
|
299 |
-
age number -- Age of the head
|
300 |
-
);
|
301 |
-
|
302 |
-
CREATE TABLE management (
|
303 |
-
department_ID number, -- Foreign key referencing Department_ID in department table
|
304 |
-
head_ID number, -- Foreign key referencing head_ID in head table
|
305 |
-
temporary_acting text -- Indicates if the head is temporarily acting
|
306 |
-
);
|
307 |
-
</schema>
|
308 |
-
<question>What are the names of the heads who are born outside the California state?</question>
|
309 |
-
<sql>
|
310 |
-
"""
|
311 |
-
```
|
312 |
-
|
313 |
-
### response
|
314 |
-
```sql
|
315 |
-
SELECT head.name FROM head WHERE head.born_state <> 'California';
|
316 |
-
```
|
317 |
-
|
318 |
-
### 3. Performance Schema Monitoring
|
319 |
-
### prompt
|
320 |
-
```python
|
321 |
-
prompt = """Generate the SQL query for SkySQL performance schema for the following question.
|
322 |
-
<example>
|
323 |
-
--question: What are the top 10 most frequently used queries/statements?
|
324 |
-
--sql: SELECT DIGEST_TEXT, COUNT(*) as frequency FROM performance_schema.events_statements_summary_by_digest GROUP BY DIGEST_TEXT ORDER BY frequency DESC LIMIT 10;
|
325 |
-
</example>
|
326 |
-
<schema>
|
327 |
-
CREATE TABLE `accounts` (`USER` char(128) DEFAULT NULL -- 'The connection''s client user name for the connection, or NULL if an internal thread.',
|
328 |
-
`HOST` char(255) DEFAULT NULL -- 'The connection client''s host name, or NULL if an internal thread.',
|
329 |
-
`CURRENT_CONNECTIONS` bigint(20) NOT NULL -- 'Current connections for the account.',\n
|
330 |
-
`TOTAL_CONNECTIONS` bigint(20) NOT NULL -- 'Total connections for the account.'
|
331 |
-
) ;
|
332 |
-
</schema>
|
333 |
-
<question>
|
334 |
-
Tell me the number of active connections each user has.
|
335 |
-
</question>
|
336 |
-
<sql>
|
337 |
-
"""
|
338 |
-
```
|
339 |
-
### response
|
340 |
-
```sql
|
341 |
-
SELECT USER, CURRENT_CONNECTIONS FROM accounts;
|
342 |
-
```
|
343 |
-
|
344 |
-
### prompt
|
345 |
-
```python
|
346 |
-
prompt = """Generate the SQL query for SkySQL performance schema for the following question.
|
347 |
-
<example>
|
348 |
-
--question: What are the top 10 most frequently used queries/statements?
|
349 |
-
--sql: SELECT DIGEST_TEXT, COUNT(*) as frequency FROM performance_schema.events_statements_summary_by_digest GROUP BY DIGEST_TEXT ORDER BY frequency DESC LIMIT 10;
|
350 |
-
</example>
|
351 |
-
<schema>
|
352 |
-
CREATE TABLE `file_summary_by_instance` (
|
353 |
-
`FILE_NAME` varchar(512) NOT NULL -- 'File name.',
|
354 |
-
`EVENT_NAME` varchar(128) NOT NULL -- 'Event name.',
|
355 |
-
`OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL -- 'Address in memory. Together with FILE_NAME and EVENT_NAME uniquely identifies a row.',
|
356 |
-
`COUNT_STAR` bigint(20) unsigned NOT NULL -- 'Number of summarized events',
|
357 |
-
`SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Total wait time of the summarized events that are timed.',
|
358 |
-
`MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Minimum wait time of the summarized events that are timed.',
|
359 |
-
`AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Average wait time of the summarized events that are timed.',
|
360 |
-
`MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Maximum wait time of the summarized events that are timed.',
|
361 |
-
`COUNT_READ` bigint(20) unsigned NOT NULL -- 'Number of all read operations, including FGETS, FGETC, FREAD, and READ.',
|
362 |
-
`SUM_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Total wait time of all read operations that are timed.',
|
363 |
-
`MIN_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all read operations that are timed.',
|
364 |
-
`AVG_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Average wait time of all read operations that are timed.',
|
365 |
-
`MAX_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all read operations that are timed.',
|
366 |
-
`SUM_NUMBER_OF_BYTES_READ` bigint(20) NOT NULL -- 'Bytes read by read operations.',
|
367 |
-
`COUNT_WRITE` bigint(20) unsigned NOT NULL -- 'Number of all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE, and PWRITE.',
|
368 |
-
`SUM_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Total wait time of all write operations that are timed.',
|
369 |
-
`MIN_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all write operations that are timed.',
|
370 |
-
`AVG_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Average wait time of all write operations that are timed.',
|
371 |
-
`MAX_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all write operations that are timed.',
|
372 |
-
`SUM_NUMBER_OF_BYTES_WRITE` bigint(20) NOT NULL -- 'Bytes written by write operations.',
|
373 |
-
`COUNT_MISC` bigint(20) unsigned NOT NULL -- 'Number of all miscellaneous operations not counted above, including CREATE, DELETE, OPEN, CLOSE, STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.',
|
374 |
-
`SUM_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Total wait time of all miscellaneous operations that are timed.',
|
375 |
-
`MIN_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all miscellaneous operations that are timed.',
|
376 |
-
`AVG_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Average wait time of all miscellaneous operations that are timed.',
|
377 |
-
`MAX_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all miscellaneous operations that are timed.'
|
378 |
-
);
|
379 |
-
</schema>
|
380 |
-
<question>
|
381 |
-
List out 10 names of the files with the most read and writes
|
382 |
-
</question>
|
383 |
-
<sql>
|
384 |
-
"""
|
385 |
-
```
|
386 |
-
|
387 |
-
### response
|
388 |
-
```sql
|
389 |
-
SELECT FILE_NAME FROM file_summary_by_instance ORDER BY SUM_NUMBER_OF_BYTES_READ DESC, SUM_NUMBER_OF_BYTES_WRITE DESC LIMIT 10;
|
390 |
-
```
|
391 |
-
|
392 |
-
|
393 |
-
### 4. Function Calling
|
394 |
-
|
395 |
-
### prompt
|
396 |
-
```python
|
397 |
-
prompt = """
|
398 |
-
Give a function call in python langugae for the following question:
|
399 |
-
<example_response>
|
400 |
-
--doc: Description: This function logs a curl command in debug mode.
|
401 |
-
Parameters:
|
402 |
-
- method (str): The HTTP method to use for the request.
|
403 |
-
- url (str): The URL to send the request to.
|
404 |
-
- data (dict, optional): The data to send in the request. Defaults to None.
|
405 |
-
- headers (dict, optional): The headers to send with the request. Defaults to None.
|
406 |
-
- level (int, optional): The log level to use for this log message. Defaults to logging.DEBUG.
|
407 |
-
Returns:
|
408 |
-
- None
|
409 |
-
Example:
|
410 |
-
log_curl_debug('GET', 'https://example.com')
|
411 |
-
--question: log a curl PUT request for url https://web.io/
|
412 |
-
--function_call: log_curl_debug(method='PUT', url = 'https://web.io')
|
413 |
-
</example_response>
|
414 |
-
<doc>
|
415 |
-
Function Name: make_get_req()
|
416 |
-
Description: This function is used to make a GET request.
|
417 |
-
Parameters:
|
418 |
-
- path (str): The path of the URL to be requested.
|
419 |
-
- data (dict): The data to be sent in the body of the request.
|
420 |
-
- flags (dict): The flags to be sent in the request.
|
421 |
-
- params (dict): The parameters to be sent in the request.
|
422 |
-
- headers (dict): The headers to be sent in the request.
|
423 |
-
- not_json_response (bool): OPTIONAL: If set to True, the function will return the raw response content instead of trying to parse it as JSON.
|
424 |
-
- trailing (str): OPTIONAL: For wrapping slash symbol in the end of string.
|
425 |
-
- absolute (bool): OPTIONAL: If set to True, the function will not prefix the URL with the base URL.
|
426 |
-
- advanced_mode (bool): OPTIONAL: If set to True, the function will return the raw response instead of trying to parse it as JSON.
|
427 |
-
Returns:
|
428 |
-
- Union[str, dict, list, None]: The response content as a string, a dictionary, a list, or None if the response was not successful.
|
429 |
-
</doc>
|
430 |
-
<instruction>
|
431 |
-
1. Strictly use named parameters mentioned in the doc to generate function calls.
|
432 |
-
2. Only return the response as python parsable string version of function call.
|
433 |
-
3. mention the 'self' parameter if required.
|
434 |
-
</instruction>
|
435 |
-
<question>
|
436 |
-
Make a GET request for the URL parameter using variable_2. For the params parameter, use 'weight' as one of the keys with variable_3 as its value, and 'width' as another key with a value of 10. For the data parameter, use variable_1. Prefix the URL with the base URL, and ensure the response is in raw format.
|
437 |
-
</question>
|
438 |
-
<function_call>
|
439 |
-
"""
|
440 |
-
```
|
441 |
-
|
442 |
-
### response
|
443 |
-
```python
|
444 |
-
make_get_req(path='https://example.com/api/v1/users', data=variable_1, params={'weight': variable_3, 'width': 10}, headers={'Content-Type': 'application/json'}, not_json_response=True, absolute=True)
|
445 |
-
```
|
446 |
-
|
447 |
-
### prompt
|
448 |
-
```python
|
449 |
-
prompt = """
|
450 |
-
Give only function call in python langugae as response for the following question:
|
451 |
-
<example_response>
|
452 |
-
--doc:
|
453 |
-
Function:
|
454 |
-
Help on function head in module pandas.core.generic:
|
455 |
-
|
456 |
-
head(self, n: 'int' = 5) -> 'Self'
|
457 |
-
Return the first `n` rows.
|
458 |
-
|
459 |
-
This function returns the first `n` rows for the object based
|
460 |
-
on position. It is useful for quickly testing if your object
|
461 |
-
has the right type of data in it.
|
462 |
-
|
463 |
-
For negative values of `n`, this function returns all rows except
|
464 |
-
the last `|n|` rows, equivalent to ``df[:n]``.
|
465 |
-
|
466 |
-
If n is larger than the number of rows, this function returns all rows.
|
467 |
-
|
468 |
-
Parameters
|
469 |
-
----------
|
470 |
-
n : int, default 5
|
471 |
-
Number of rows to select.
|
472 |
-
|
473 |
-
Returns
|
474 |
-
-------
|
475 |
-
same type as caller
|
476 |
-
The first `n` rows of the caller object.
|
477 |
-
|
478 |
-
See Also
|
479 |
-
--------
|
480 |
-
DataFrame.tail: Returns the last `n` rows.
|
481 |
-
|
482 |
-
Examples
|
483 |
-
--------
|
484 |
-
>>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
|
485 |
-
... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
|
486 |
-
>>> df
|
487 |
-
animal
|
488 |
-
0 alligator
|
489 |
-
|
490 |
-
--question: Get the top 5 rows with the highest Engagement_Score. Parameter Description: Use 5 as Number of rows to return ,Use variable_3 as Sorted DataFrame, Do not call any other function, Pass variable to self parameter for method calls
|
491 |
-
--function_call: head(self=variable_3, n=5)
|
492 |
-
</example_response>
|
493 |
-
<doc>
|
494 |
-
Function: sort_values
|
495 |
-
sort_values in module pandas.core.frame:
|
496 |
-
sort_values(self, by: 'IndexLabel', *, axis: 'Axis' = 0, ascending: 'bool | list[bool] | tuple[bool, ...]' = True, inplace: 'bool' = False, kind: 'SortKind' = 'quicksort', na_position: 'str' = 'last', ignore_index: 'bool' = False, key: 'ValueKeyFunc | None' = None) -> 'DataFrame | None'
|
497 |
-
Sort by the values along either axis.
|
498 |
-
Parameters
|
499 |
-
----------
|
500 |
-
by : str or list of str
|
501 |
-
Name or list of names to sort by.
|
502 |
-
|
503 |
-
- if `axis` is 0 or `'index'` then `by` may contain index
|
504 |
-
levels and/or column labels.
|
505 |
-
- if `axis` is 1 or `'columns'` then `by` may contain column
|
506 |
-
levels and/or index labels.
|
507 |
-
axis : "{0 or 'index', 1 or 'columns'}", default 0
|
508 |
-
Axis to be sorted.
|
509 |
-
ascending : bool or list of bool, default True
|
510 |
-
Sort ascending vs. descending. Specify list for multiple sort
|
511 |
-
orders. If this is a list of bools, must match the length of
|
512 |
-
the
|
513 |
-
</doc>
|
514 |
-
<instruction>
|
515 |
-
1. Strictly use named parameters mentioned in the doc to generate function calls.
|
516 |
-
2. Only return the response as python parsable string version of function call.
|
517 |
-
3. Use the 'self' parameter if required in the function call with it's value in named keyword format.
|
518 |
-
</instruction>
|
519 |
-
<question>
|
520 |
-
Using the above function, Sort the DataFrame by the Engagement_Score in descending order. Parameter Description: Use Engagement_Score as Column name to sort by ,Use False as Sort in descending order ,Use variable_1 as DataFrame to sort, Do not call any other function, Pass variable to self parameter for method calls
|
521 |
-
</question>
|
522 |
-
<function_call>
|
523 |
-
"""
|
524 |
-
```
|
525 |
-
### response
|
526 |
-
```python
|
527 |
-
sort_values(self=variable_1, by='Engagement_Score', ascending=False)
|
528 |
-
```
|
529 |
|
530 |
|
531 |
|
|
|
4 |
license: apache-2.0
|
5 |
library_name: transformers
|
6 |
tags:
|
|
|
|
|
|
|
|
|
7 |
- python
|
8 |
- java
|
9 |
- cpp
|
|
|
11 |
- function calling
|
12 |
- unit tests
|
13 |
- causalLM
|
14 |
+
- codeLLAMA modified archi
|
15 |
+
- document
|
16 |
+
- code
|
17 |
+
- code2doc
|
18 |
- instruction_tuned
|
19 |
- basemodel
|
20 |
- pytorch
|
|
|
25 |
- accuracy
|
26 |
pipeline_tag: text-generation
|
27 |
widget:
|
28 |
+
- text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document the code--doc:Description:This function takes a number and divides it by 2.Parameters:- x (numeric): The input value to be divided by 2.Returns:- float: The result of x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center, zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates: {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return output_html_path</function_code><question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
example_title: example
|
30 |
---
|
31 |
# pip-library-etl-1.3b
|
32 |
|
33 |
+
[pipableAi](https://www.pipable.ai/)
|
34 |
|
35 |
+
[colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
|
36 |
|
37 |
+
[pip flow]()
|
38 |
|
39 |
+
[linkedin_post]()
|
40 |
|
41 |
+
[reddit_post]()
|
42 |
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
## Objective
|
45 |
|
46 |
+

|
47 |
|
48 |
+
Given a goal and tools can Ai intelligently use the tools to reach the goal ?
|
49 |
+
What if it has a meagre 1.3b params/neurons akin to that of an owl ? Can it follow instructions and plan to reach a goal ?
|
50 |
+
Apparently it can.
|
51 |
+
Releasing `pip-code-bandit` and `pip_flow` a model and a library to manage and run goal oriented agentic system.
|
52 |
|
|
|
53 |
|
54 |
+
## Model attributes
|
55 |
|
56 |
+
```javascript
|
57 |
+
-- number of params ~ 1.3b [2.9 Gb GPU memory footprint]
|
58 |
+
-- sequence length ~ 16.3k [Can go higher but will show performance degradation]
|
59 |
+
-- license - apache 2.0
|
60 |
+
-- tasks:
|
61 |
+
1. complex planning of sequential function calls with right params to accomplish a goal | a list of callables
|
62 |
+
2. function calling | doc or code and goal
|
63 |
+
3. code generation | plan and goal
|
64 |
+
4. code generation | goal
|
65 |
+
5. doc generation | code
|
66 |
+
6. code generation | doc
|
67 |
+
7. file recreated in json | any raw data
|
68 |
+
8. corrected generation | new instruction with error
|
69 |
+
-- instruction following , RL tuned.
|
70 |
+
```
|
71 |
|
|
|
72 |
|
73 |
+
## How we built it?
|
74 |
|
75 |
+
We used a simulator to simulate environments where the model could play games to achieve goals, given a set of actions available to it.
|
76 |
+
All the model could do was find the right action and config to incur positive reward.
|
77 |
+
The reward policy is around the concept of model going to a stable state of zero net sum reward for both good and bad behaviour.
|
78 |
+
In this set up the model, which was pre trained on code , function documentation and similar OS datasets ,was RL tuned for instruction following and reliability.
|
79 |
|
80 |
+
## License
|
|
|
81 |
|
82 |
+
The model is open source under apache 2.0. License
|
|
|
83 |
|
84 |
+
## Usage
|
85 |
|
86 |
+
### NOTE:
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
89 |
|
90 |
### Library use
|
91 |
|
92 |
+
For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pip flow]().
|
93 |
|
94 |
Here's a brief overview of what can be achieved using the PipEtl library:
|
95 |
|
|
|
98 |
- `Module Documentation` : The generate_module_docstrings method allows for generating documentation for all methods and functions within a given module or package. This capability streamlines the documentation process, especially for large codebases with numerous functions.
|
99 |
- `SQL Query Generation` : Users can leverage the generate_sql method to automatically generate SQL queries based on provided schemas and questions. This functionality simplifies the process of creating SQL queries, particularly for data-related tasks.
|
100 |
|
101 |
+
For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
|
102 |
+
|
103 |
|
104 |
|
105 |
### Installation
|
|
|
109 |
```
|
110 |
|
111 |
### Prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
|
115 |
|