QagentS commited on
Commit
70689dd
·
verified ·
1 Parent(s): d075ad5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -460
README.md CHANGED
@@ -4,10 +4,6 @@ language:
4
  license: apache-2.0
5
  library_name: transformers
6
  tags:
7
- - planning
8
- - code
9
- - policy control
10
- - parsing
11
  - python
12
  - java
13
  - cpp
@@ -15,7 +11,10 @@ tags:
15
  - function calling
16
  - unit tests
17
  - causalLM
18
- - codeLLAMA
 
 
 
19
  - instruction_tuned
20
  - basemodel
21
  - pytorch
@@ -26,82 +25,71 @@ metrics:
26
  - accuracy
27
  pipeline_tag: text-generation
28
  widget:
29
- - text: '<function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center
30
- = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/
31
- sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for
32
- polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords)
33
- for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center,
34
- zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster
35
- = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for
36
- coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates:
37
- {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return
38
- output_html_path</function_code><question>Document the python code above giving
39
- function description ,parameters and return type and example how to call the function</question><doc>'
40
  example_title: example
41
  ---
42
  # pip-library-etl-1.3b
43
 
44
- [pipableAi](https://www.linkedin.com/company/pipable.ai/about/)
45
 
46
- [colab_notebook](https://colab.research.google.com/drive/17PyMU_3QN9LROy7x-jmaema0cuLRzBvc?usp=sharing)
47
 
48
- [pip library_etl](https://github.com/PipableAI/pip-library-etl.git)
49
 
50
- [linkedin_post](https://www.linkedin.com/posts/pipable%2Eai_github-pipableaipip-library-etl-this-activity-7179111129678327809-Pgxy?utm_source=share&utm_medium=member_desktop)
51
 
52
- ## What have we built?
53
 
54
- A 1.3 bn code documentation model that outperforms most models on documenting codes and making your in-house libs ready for LLM and RAG pipelines.
55
- We have also open sourced a [pip library_etl](https://github.com/PipableAI/pip-library-etl.git) for the same, together the lib and model can turn your codebase to functional parse tree ready to be consumed by LLMs to execute complex tasks.
56
- This model is also capable of generating SQL queries with accuracies on par with those of [pip-sql-1.3b](https://huggingface.co/PipableAI/pip-sql-1.3b), with additional capabilities of providing extra examples, instructions ,and column descriptions as context.
57
- This is a further trained version of pip-sql-1.3b and performance comparable to GPT.
58
 
 
59
 
60
- ## How we built it?
61
 
62
- We used softmax cross entropy and a modified form of policy grad along with Q loss, optimized in an EM set up.
63
- The performance for the metioned tasks are comparable to much bigger LLMs and GPT-3.5
 
 
64
 
65
- ## License
66
 
67
- The model is open source under apache 2.0. License
68
 
69
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- ### NOTE:
72
 
 
73
 
74
- If you wish to try this model without utilizing your GPU, we have hosted the model on our end. To execute the library using the hosted playground model, initialize the generator as shown below:
 
 
 
75
 
76
- ```python
77
- from pip_library_etl import PipEtl
78
 
79
- generator = PipEtl(device="cloud")
80
- ```
81
 
82
- We have hosted the model at https://playground.pipable.ai/infer. Hence, one can also make a POST request to this endpoint with the following payload:
83
 
84
- ```json
85
- {
86
- "model_name": "PipableAI/pip-library-etl-1.3b",
87
- "prompt": "prompt",
88
- "max_new_tokens": "400"
89
- }
90
- ```
91
 
92
- ```bash
93
- curl -X 'POST' \
94
- 'https://playground.pipable.ai/infer' \
95
- -H 'accept: application/json' \
96
- -H 'Content-Type: application/x-www-form-urlencoded' \
97
- -d 'model_name=PipableAI%2Fpip-library-etl-1.3b&prompt="YOUR PROMPT"&max_new_tokens=400'
98
- ```
99
 
100
- Alternatively, you can directly access UI endpoint at https://playground.pipable.ai/docs#/default/infer_infer_post.
101
 
102
  ### Library use
103
 
104
- For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pip library_etl](https://github.com/PipableAI/pip-library-etl.git).
105
 
106
  Here's a brief overview of what can be achieved using the PipEtl library:
107
 
@@ -110,7 +98,8 @@ Here's a brief overview of what can be achieved using the PipEtl library:
110
  - `Module Documentation` : The generate_module_docstrings method allows for generating documentation for all methods and functions within a given module or package. This capability streamlines the documentation process, especially for large codebases with numerous functions.
111
  - `SQL Query Generation` : Users can leverage the generate_sql method to automatically generate SQL queries based on provided schemas and questions. This functionality simplifies the process of creating SQL queries, particularly for data-related tasks.
112
 
113
- For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/17PyMU_3QN9LROy7x-jmaema0cuLRzBvc?usp=sharing)
 
114
 
115
 
116
  ### Installation
@@ -120,412 +109,7 @@ pip install transformers
120
  ```
121
 
122
  ### Prompt
123
- ```python
124
- prompt = f"""<example_response>{--question , --query}</example_response><function_code>{code}</function_code>
125
- <question>Give one line description of the python code above in natural language.</question>
126
- <doc>"""
127
-
128
- prompt = f"""<example_response>{example of some --question: , --query}</example_response><schema>{schema with cols described}</schema>
129
- <question>Write a sql query to ....</question>
130
- <sql>"""
131
- ```
132
-
133
- ### PyTorch
134
- ```python
135
- from transformers import AutoModelForCausalLM, AutoTokenizer
136
- device = "cuda"
137
- model = AutoModelForCausalLM.from_pretrained("PipableAI/pip-library-etl-1.3b").to(device)
138
- tokenizer = AutoTokenizer.from_pretrained("PipableAI/pip-library-etl-1.3b")
139
- prompt = f"""
140
- <example_response>
141
- --code:def divide_by_two(x: float) -> float: return x / 2
142
- --question:Document the python code above giving function description ,parameters and return type and example on how to call the function
143
- --doc:
144
- Description: This function divides a given number by 2.
145
- Parameters:
146
- - x (float): The input value to be divided by 2.
147
- Returns:
148
- - float: The result of x divided by 2.
149
- Example:
150
- divide_by_two(1.0)
151
- </example_response>
152
- <function_code>
153
- def download_file(shared_url, destination):
154
- try:
155
- if not shared_url.startswith("https://drive.google.com"):
156
- raise ValueError("Please provde a valid google drive link.")
157
- file_id = shared_url.split("/d/")[1]
158
- file_id = file_id.split("/")[0]
159
- url = f"https://drive.google.com/uc?id={file_id}"
160
- gdown.download(url, destination, quiet=False)
161
- except Exception as e:
162
- print(f"Error downloading file from Google Drive as {e}")
163
- raise e
164
- </function_code>
165
- <instructions>
166
- 1. In the examples while calling function use the name mentioned after `def ` in the above function_code.
167
- 2. In the generated docs use valid python type hints as per PEP 484.
168
- </instructions>
169
- <question>Document the python code above giving function description ,parameters and return type and example how to call the function.</question>
170
- <doc>
171
- """
172
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
173
- outputs = model.generate(**inputs, max_new_tokens=450)
174
- doc = (
175
- tokenizer.decode(outputs[0], skip_special_tokens=True)
176
- .split("<doc>")[-1]
177
- .split("</doc>")[0]
178
- )
179
- doc = (
180
- doc.replace("<p>", "")
181
- .replace("</p>", "")
182
- .replace("<function_description>", "")
183
- .replace("</function_description>", "")
184
- )
185
- print(doc)
186
- ```
187
-
188
-
189
 
190
- ## Examples
191
-
192
- ### 1. Code Documentation
193
- ### prompt
194
- ```python
195
- prompt ='''<example_response>
196
- --code:def divide_by_two(x: float) -> float: return x / 2
197
- --question:Document the python code above giving function description ,parameters and return type and example on how to call the function
198
- --doc:
199
- Description: This function divides a given number by 2.
200
- Parameters:
201
- - x (float): The input value to be divided by 2.
202
- Returns:
203
- - float: The result of x divided by 2.
204
- Example:
205
- divide_by_two(1.0)
206
- </example_response>
207
- <function_code>def _plot_bounding_polygon(
208
- polygons_coordinates, output_html_path="bounding_polygon_map.html"
209
- ):
210
- # Create a Folium map centered at the average coordinates of all bounding boxes
211
- map_center = [
212
- sum(
213
- [
214
- coord[0]
215
- for polygon_coords in polygons_coordinates
216
- for coord in polygon_coords
217
- ]
218
- )
219
- / sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),
220
- sum(
221
- [
222
- coord[1]
223
- for polygon_coords in polygons_coordinates
224
- for coord in polygon_coords
225
- ]
226
- )
227
- / sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),
228
- ]
229
-
230
- my_map = folium.Map(location=map_center, zoom_start=12)
231
-
232
- # Add each bounding polygon to the map
233
- for polygon_coords in polygons_coordinates:
234
- folium.Polygon(
235
- locations=polygon_coords,
236
- color="blue",
237
- fill=True,
238
- fill_color="blue",
239
- fill_opacity=0.2,
240
- ).add_to(my_map)
241
-
242
- # Add bounding boxes as markers to the map
243
- marker_cluster = MarkerCluster().add_to(my_map)
244
-
245
- for polygon_coords in polygons_coordinates:
246
- for coord in polygon_coords:
247
- folium.Marker(
248
- location=[coord[0], coord[1]], popup=f"Coordinates: {coord}"
249
- ).add_to(marker_cluster)
250
-
251
- # Add draw control to allow users to draw additional polygons
252
- draw = Draw(export=True)
253
- draw.add_to(my_map)
254
-
255
- # Save the map as an HTML file
256
- my_map.save(output_html_path)
257
-
258
- return output_html_path
259
- </function_code>
260
- <instructions>
261
- 1. In the examples while calling function use the name mentioned after `def ` in the above function_code.
262
- 2. In the generated docs use valid python type hints as per PEP 484.
263
- </instructions>
264
- <question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'''
265
- ```
266
-
267
- ### Response
268
- ```txt
269
- Description:This function generates a map of the bounding polygons and saves it as an HTML file.
270
- Parameters:
271
- - polygons_coordinates (list of lists of tuples): A list of lists of tuples representing the coordinates of the polygons. Each polygon is a list of coordinates.
272
- - output_html_path (str, optional): The path where the HTML file should be saved. Defaults to "bounding_polygon_map.html".
273
- Returns:
274
- - str: The path to the saved HTML file.
275
- Example:
276
- To call the function, use the following code:
277
- plot_bounding_polygon([[(0, 0), (1, 0), (1, 1), (0, 1)], [(2, 2), (3, 2), (3, 3), (2, 3)]], "my_map.html").
278
- ```
279
-
280
-
281
- ### 2. SQL Generation
282
- ### prompt
283
- ```python
284
- prompt = """Generate a simple SQL query from the schema mentioned for the following question.
285
- <schema>
286
- CREATE TABLE department (
287
- Department_ID number, -- Unique identifier for the department
288
- Name text, -- Name of the department
289
- Creation text, -- Date of creation or establishment
290
- Ranking number, -- Ranking of the department
291
- Budget_in_Billions number, -- Budget of the department in billions
292
- Num_Employees number -- Number of employees in the department
293
- );
294
-
295
- CREATE TABLE head (
296
- head_ID number, -- Unique identifier for the head
297
- name text, -- Name of the head
298
- born_state text, -- State where the head was born
299
- age number -- Age of the head
300
- );
301
-
302
- CREATE TABLE management (
303
- department_ID number, -- Foreign key referencing Department_ID in department table
304
- head_ID number, -- Foreign key referencing head_ID in head table
305
- temporary_acting text -- Indicates if the head is temporarily acting
306
- );
307
- </schema>
308
- <question>What are the names of the heads who are born outside the California state?</question>
309
- <sql>
310
- """
311
- ```
312
-
313
- ### response
314
- ```sql
315
- SELECT head.name FROM head WHERE head.born_state <> 'California';
316
- ```
317
-
318
- ### 3. Performance Schema Monitoring
319
- ### prompt
320
- ```python
321
- prompt = """Generate the SQL query for SkySQL performance schema for the following question.
322
- <example>
323
- --question: What are the top 10 most frequently used queries/statements?
324
- --sql: SELECT DIGEST_TEXT, COUNT(*) as frequency FROM performance_schema.events_statements_summary_by_digest GROUP BY DIGEST_TEXT ORDER BY frequency DESC LIMIT 10;
325
- </example>
326
- <schema>
327
- CREATE TABLE `accounts` (`USER` char(128) DEFAULT NULL -- 'The connection''s client user name for the connection, or NULL if an internal thread.',
328
- `HOST` char(255) DEFAULT NULL -- 'The connection client''s host name, or NULL if an internal thread.',
329
- `CURRENT_CONNECTIONS` bigint(20) NOT NULL -- 'Current connections for the account.',\n
330
- `TOTAL_CONNECTIONS` bigint(20) NOT NULL -- 'Total connections for the account.'
331
- ) ;
332
- </schema>
333
- <question>
334
- Tell me the number of active connections each user has.
335
- </question>
336
- <sql>
337
- """
338
- ```
339
- ### response
340
- ```sql
341
- SELECT USER, CURRENT_CONNECTIONS FROM accounts;
342
- ```
343
-
344
- ### prompt
345
- ```python
346
- prompt = """Generate the SQL query for SkySQL performance schema for the following question.
347
- <example>
348
- --question: What are the top 10 most frequently used queries/statements?
349
- --sql: SELECT DIGEST_TEXT, COUNT(*) as frequency FROM performance_schema.events_statements_summary_by_digest GROUP BY DIGEST_TEXT ORDER BY frequency DESC LIMIT 10;
350
- </example>
351
- <schema>
352
- CREATE TABLE `file_summary_by_instance` (
353
- `FILE_NAME` varchar(512) NOT NULL -- 'File name.',
354
- `EVENT_NAME` varchar(128) NOT NULL -- 'Event name.',
355
- `OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL -- 'Address in memory. Together with FILE_NAME and EVENT_NAME uniquely identifies a row.',
356
- `COUNT_STAR` bigint(20) unsigned NOT NULL -- 'Number of summarized events',
357
- `SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Total wait time of the summarized events that are timed.',
358
- `MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Minimum wait time of the summarized events that are timed.',
359
- `AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Average wait time of the summarized events that are timed.',
360
- `MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL -- 'Maximum wait time of the summarized events that are timed.',
361
- `COUNT_READ` bigint(20) unsigned NOT NULL -- 'Number of all read operations, including FGETS, FGETC, FREAD, and READ.',
362
- `SUM_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Total wait time of all read operations that are timed.',
363
- `MIN_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all read operations that are timed.',
364
- `AVG_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Average wait time of all read operations that are timed.',
365
- `MAX_TIMER_READ` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all read operations that are timed.',
366
- `SUM_NUMBER_OF_BYTES_READ` bigint(20) NOT NULL -- 'Bytes read by read operations.',
367
- `COUNT_WRITE` bigint(20) unsigned NOT NULL -- 'Number of all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF, FWRITE, and PWRITE.',
368
- `SUM_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Total wait time of all write operations that are timed.',
369
- `MIN_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all write operations that are timed.',
370
- `AVG_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Average wait time of all write operations that are timed.',
371
- `MAX_TIMER_WRITE` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all write operations that are timed.',
372
- `SUM_NUMBER_OF_BYTES_WRITE` bigint(20) NOT NULL -- 'Bytes written by write operations.',
373
- `COUNT_MISC` bigint(20) unsigned NOT NULL -- 'Number of all miscellaneous operations not counted above, including CREATE, DELETE, OPEN, CLOSE, STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.',
374
- `SUM_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Total wait time of all miscellaneous operations that are timed.',
375
- `MIN_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Minimum wait time of all miscellaneous operations that are timed.',
376
- `AVG_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Average wait time of all miscellaneous operations that are timed.',
377
- `MAX_TIMER_MISC` bigint(20) unsigned NOT NULL -- 'Maximum wait time of all miscellaneous operations that are timed.'
378
- );
379
- </schema>
380
- <question>
381
- List out 10 names of the files with the most read and writes
382
- </question>
383
- <sql>
384
- """
385
- ```
386
-
387
- ### response
388
- ```sql
389
- SELECT FILE_NAME FROM file_summary_by_instance ORDER BY SUM_NUMBER_OF_BYTES_READ DESC, SUM_NUMBER_OF_BYTES_WRITE DESC LIMIT 10;
390
- ```
391
-
392
-
393
- ### 4. Function Calling
394
-
395
- ### prompt
396
- ```python
397
- prompt = """
398
- Give a function call in python langugae for the following question:
399
- <example_response>
400
- --doc: Description: This function logs a curl command in debug mode.
401
- Parameters:
402
- - method (str): The HTTP method to use for the request.
403
- - url (str): The URL to send the request to.
404
- - data (dict, optional): The data to send in the request. Defaults to None.
405
- - headers (dict, optional): The headers to send with the request. Defaults to None.
406
- - level (int, optional): The log level to use for this log message. Defaults to logging.DEBUG.
407
- Returns:
408
- - None
409
- Example:
410
- log_curl_debug('GET', 'https://example.com')
411
- --question: log a curl PUT request for url https://web.io/
412
- --function_call: log_curl_debug(method='PUT', url = 'https://web.io')
413
- </example_response>
414
- <doc>
415
- Function Name: make_get_req()
416
- Description: This function is used to make a GET request.
417
- Parameters:
418
- - path (str): The path of the URL to be requested.
419
- - data (dict): The data to be sent in the body of the request.
420
- - flags (dict): The flags to be sent in the request.
421
- - params (dict): The parameters to be sent in the request.
422
- - headers (dict): The headers to be sent in the request.
423
- - not_json_response (bool): OPTIONAL: If set to True, the function will return the raw response content instead of trying to parse it as JSON.
424
- - trailing (str): OPTIONAL: For wrapping slash symbol in the end of string.
425
- - absolute (bool): OPTIONAL: If set to True, the function will not prefix the URL with the base URL.
426
- - advanced_mode (bool): OPTIONAL: If set to True, the function will return the raw response instead of trying to parse it as JSON.
427
- Returns:
428
- - Union[str, dict, list, None]: The response content as a string, a dictionary, a list, or None if the response was not successful.
429
- </doc>
430
- <instruction>
431
- 1. Strictly use named parameters mentioned in the doc to generate function calls.
432
- 2. Only return the response as python parsable string version of function call.
433
- 3. mention the 'self' parameter if required.
434
- </instruction>
435
- <question>
436
- Make a GET request for the URL parameter using variable_2. For the params parameter, use 'weight' as one of the keys with variable_3 as its value, and 'width' as another key with a value of 10. For the data parameter, use variable_1. Prefix the URL with the base URL, and ensure the response is in raw format.
437
- </question>
438
- <function_call>
439
- """
440
- ```
441
-
442
- ### response
443
- ```python
444
- make_get_req(path='https://example.com/api/v1/users', data=variable_1, params={'weight': variable_3, 'width': 10}, headers={'Content-Type': 'application/json'}, not_json_response=True, absolute=True)
445
- ```
446
-
447
- ### prompt
448
- ```python
449
- prompt = """
450
- Give only function call in python langugae as response for the following question:
451
- <example_response>
452
- --doc:
453
- Function:
454
- Help on function head in module pandas.core.generic:
455
-
456
- head(self, n: 'int' = 5) -> 'Self'
457
- Return the first `n` rows.
458
-
459
- This function returns the first `n` rows for the object based
460
- on position. It is useful for quickly testing if your object
461
- has the right type of data in it.
462
-
463
- For negative values of `n`, this function returns all rows except
464
- the last `|n|` rows, equivalent to ``df[:n]``.
465
-
466
- If n is larger than the number of rows, this function returns all rows.
467
-
468
- Parameters
469
- ----------
470
- n : int, default 5
471
- Number of rows to select.
472
-
473
- Returns
474
- -------
475
- same type as caller
476
- The first `n` rows of the caller object.
477
-
478
- See Also
479
- --------
480
- DataFrame.tail: Returns the last `n` rows.
481
-
482
- Examples
483
- --------
484
- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
485
- ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']})
486
- >>> df
487
- animal
488
- 0 alligator
489
-
490
- --question: Get the top 5 rows with the highest Engagement_Score. Parameter Description: Use 5 as Number of rows to return ,Use variable_3 as Sorted DataFrame, Do not call any other function, Pass variable to self parameter for method calls
491
- --function_call: head(self=variable_3, n=5)
492
- </example_response>
493
- <doc>
494
- Function: sort_values
495
- sort_values in module pandas.core.frame:
496
- sort_values(self, by: 'IndexLabel', *, axis: 'Axis' = 0, ascending: 'bool | list[bool] | tuple[bool, ...]' = True, inplace: 'bool' = False, kind: 'SortKind' = 'quicksort', na_position: 'str' = 'last', ignore_index: 'bool' = False, key: 'ValueKeyFunc | None' = None) -> 'DataFrame | None'
497
- Sort by the values along either axis.
498
- Parameters
499
- ----------
500
- by : str or list of str
501
- Name or list of names to sort by.
502
-
503
- - if `axis` is 0 or `'index'` then `by` may contain index
504
- levels and/or column labels.
505
- - if `axis` is 1 or `'columns'` then `by` may contain column
506
- levels and/or index labels.
507
- axis : "{0 or 'index', 1 or 'columns'}", default 0
508
- Axis to be sorted.
509
- ascending : bool or list of bool, default True
510
- Sort ascending vs. descending. Specify list for multiple sort
511
- orders. If this is a list of bools, must match the length of
512
- the
513
- </doc>
514
- <instruction>
515
- 1. Strictly use named parameters mentioned in the doc to generate function calls.
516
- 2. Only return the response as python parsable string version of function call.
517
- 3. Use the 'self' parameter if required in the function call with it's value in named keyword format.
518
- </instruction>
519
- <question>
520
- Using the above function, Sort the DataFrame by the Engagement_Score in descending order. Parameter Description: Use Engagement_Score as Column name to sort by ,Use False as Sort in descending order ,Use variable_1 as DataFrame to sort, Do not call any other function, Pass variable to self parameter for method calls
521
- </question>
522
- <function_call>
523
- """
524
- ```
525
- ### response
526
- ```python
527
- sort_values(self=variable_1, by='Engagement_Score', ascending=False)
528
- ```
529
 
530
 
531
 
 
4
  license: apache-2.0
5
  library_name: transformers
6
  tags:
 
 
 
 
7
  - python
8
  - java
9
  - cpp
 
11
  - function calling
12
  - unit tests
13
  - causalLM
14
+ - codeLLAMA modified archi
15
+ - document
16
+ - code
17
+ - code2doc
18
  - instruction_tuned
19
  - basemodel
20
  - pytorch
 
25
  - accuracy
26
  pipeline_tag: text-generation
27
  widget:
28
+ - text: '<example_response>--code:def function_divide2(x): return x / 2--question:Document the code--doc:Description:This function takes a number and divides it by 2.Parameters:- x (numeric): The input value to be divided by 2.Returns:- float: The result of x divided by 2.Example:To call the function, use the following code:function_divide2(1.0)</example_response><function_code>def _plot_bounding_polygon(polygons_coordinates, output_html_path=bounding_polygon_map.html):map_center = [sum([coord[0]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),sum([coord[1]for polygon_coords in polygons_coordinatesfor coord in polygon_coords])/ sum([len(polygon_coords) for polygon_coords in polygons_coordinates]),]my_map = folium.Map(location=map_center, zoom_start=12)for polygon_coords in polygons_coordinates:folium.Polygon(locations=polygon_coords,color=blue,fill=True,fill_color=blue,fill_opacity=0.2,).add_to(my_map)marker_cluster = MarkerCluster().add_to(my_map)for polygon_coords in polygons_coordinates:for coord in polygon_coords:folium.Marker(location=[coord[0], coord[1]], popup=fCoordinates: {coord}).add_to(marker_cluster)draw = Draw(export=True)draw.add_to(my_map)my_map.save(output_html_path)return output_html_path</function_code><question>Document the python code above giving function description ,parameters and return type and example how to call the function</question><doc>'
 
 
 
 
 
 
 
 
 
 
29
  example_title: example
30
  ---
31
  # pip-library-etl-1.3b
32
 
33
+ [pipableAi](https://www.pipable.ai/)
34
 
35
+ [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
36
 
37
+ [pip flow]()
38
 
39
+ [linkedin_post]()
40
 
41
+ [reddit_post]()
42
 
 
 
 
 
43
 
44
+ ## Objective
45
 
46
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658d8095a2a6a6e0da8bb8a6/V5vUqiFiV4DPt1Xm77PHv.png)
47
 
48
+ Given a goal and tools can Ai intelligently use the tools to reach the goal ?
49
+ What if it has a meagre 1.3b params/neurons akin to that of an owl ? Can it follow instructions and plan to reach a goal ?
50
+ Apparently it can.
51
+ Releasing `pip-code-bandit` and `pip_flow` a model and a library to manage and run goal oriented agentic system.
52
 
 
53
 
54
+ ## Model attributes
55
 
56
+ ```javascript
57
+ -- number of params ~ 1.3b [2.9 Gb GPU memory footprint]
58
+ -- sequence length ~ 16.3k [Can go higher but will show performance degradation]
59
+ -- license - apache 2.0
60
+ -- tasks:
61
+ 1. complex planning of sequential function calls with right params to accomplish a goal | a list of callables
62
+ 2. function calling | doc or code and goal
63
+ 3. code generation | plan and goal
64
+ 4. code generation | goal
65
+ 5. doc generation | code
66
+ 6. code generation | doc
67
+ 7. file recreated in json | any raw data
68
+ 8. corrected generation | new instruction with error
69
+ -- instruction following , RL tuned.
70
+ ```
71
 
 
72
 
73
+ ## How we built it?
74
 
75
+ We used a simulator to simulate environments where the model could play games to achieve goals, given a set of actions available to it.
76
+ All the model could do was find the right action and config to incur positive reward.
77
+ The reward policy is around the concept of model going to a stable state of zero net sum reward for both good and bad behaviour.
78
+ In this set up the model, which was pre trained on code , function documentation and similar OS datasets ,was RL tuned for instruction following and reliability.
79
 
80
+ ## License
 
81
 
82
+ The model is open source under apache 2.0. License
 
83
 
84
+ ## Usage
85
 
86
+ ### NOTE:
 
 
 
 
 
 
87
 
 
 
 
 
 
 
 
88
 
 
89
 
90
  ### Library use
91
 
92
+ For directly using the capabilities of model without putting extra efforts on schems and prompts try to use [pip flow]().
93
 
94
  Here's a brief overview of what can be achieved using the PipEtl library:
95
 
 
98
  - `Module Documentation` : The generate_module_docstrings method allows for generating documentation for all methods and functions within a given module or package. This capability streamlines the documentation process, especially for large codebases with numerous functions.
99
  - `SQL Query Generation` : Users can leverage the generate_sql method to automatically generate SQL queries based on provided schemas and questions. This functionality simplifies the process of creating SQL queries, particularly for data-related tasks.
100
 
101
+ For detailed usage refer to the [colab_notebook](https://colab.research.google.com/drive/10av3SxFf0Psx_IkmZbcUhiVznStV5pVS?usp=sharing)
102
+
103
 
104
 
105
  ### Installation
 
109
  ```
110
 
111
  ### Prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
 
115