Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GPT-2 DPO Fine-Tuned Model
|
2 |
+
|
3 |
+
This repository contains a fine-tuned **GPT-2** model trained using **Direct Preference Optimization (DPO)** on preference-based data.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
- **Base Model:** GPT-2
|
7 |
+
- **Fine-tuned on:** Preference optimization dataset
|
8 |
+
- **Training Method:** Direct Preference Optimization (DPO)
|
9 |
+
- **Hyperparameters:**
|
10 |
+
- Learning Rate: `1e-3`
|
11 |
+
- Batch Size: `8`
|
12 |
+
- Epochs: `5`
|
13 |
+
- Beta: `0.1`
|
14 |
+
|
15 |
+
## Dataset
|
16 |
+
The dataset used for training is **`Dahoas/static-hh`**, a publicly available dataset on Hugging Face, designed for **human preference optimization**. It consists of multiple prompts along with corresponding **chosen** and **rejected** responses.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
Load the model and tokenizer from Hugging Face:
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
22 |
+
|
23 |
+
model_name = "PhuePwint/dpo_gpt2"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
26 |
+
|
27 |
+
# Generate response
|
28 |
+
prompt = "What is the purpose of life?"
|
29 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
30 |
+
output = model.generate(input_ids, max_length=100)
|
31 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|