Upload readme.md
Browse files
readme.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TEMU-VTOFF: Virtual Try-Off & Fashion Understanding Toolkit
|
2 |
+
TEMU-VTOFF is a state-of-the-art toolkit for virtual try-off and fashion image understanding. It leverages advanced diffusion models, vision-language models, and semantic segmentation to enable garment transfer, attribute captioning, and mask generation for fashion images.
|
3 |
+
<img src="./assets/teaser.png" alt="example">
|
4 |
+
## Table of Contents
|
5 |
+
|
6 |
+
- [Features](#features)
|
7 |
+
- [Installation](#installation)
|
8 |
+
- [Quick Start](#quick-start)
|
9 |
+
- [Core Components](#core-components)
|
10 |
+
- [1. Inference Pipeline (`inference.py`)](#1-inference-pipeline-inferencepy)
|
11 |
+
- [2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)](#2-visual-attribute-captioning-precompute_utilscaptioning_qwenpy)
|
12 |
+
- [3. Clothing Segmentation (`SegCloth.py`)](#3-clothing-segmentation-segclothpy)
|
13 |
+
- [Examples](#examples)
|
14 |
+
- [Citation](#citation)
|
15 |
+
- [License](#license)
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## Features
|
20 |
+
|
21 |
+
- **Virtual Try-On**: Generate realistic try-on images using Stable Diffusion 3-based pipelines.
|
22 |
+
- **Visual Attribute Captioning**: Extract fine-grained garment attributes using Qwen-VL.
|
23 |
+
- **Clothing Segmentation**: Obtain binary and fine masks for garments using SegFormer.
|
24 |
+
- **Dataset Support**: Works with DressCode and VITON-HD datasets.
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## Installation
|
29 |
+
|
30 |
+
1. **Clone the repository:**
|
31 |
+
|
32 |
+
```bash
|
33 |
+
git clone https://github.com/yourusername/TEMU-VTOFF.git
|
34 |
+
cd TEMU-VTOFF
|
35 |
+
```
|
36 |
+
|
37 |
+
2. **Install dependencies:**
|
38 |
+
|
39 |
+
```bash
|
40 |
+
pip install -r requirements.txt
|
41 |
+
```
|
42 |
+
|
43 |
+
3. **(Optional) Setup virtual environment:**
|
44 |
+
```bash
|
45 |
+
python -m venv venv
|
46 |
+
source venv/bin/activate # On Windows: venv\Scripts\activate
|
47 |
+
```
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## Quick Start
|
52 |
+
|
53 |
+
### 1. Virtual Try-On Inference
|
54 |
+
|
55 |
+
```bash
|
56 |
+
python inference.py \
|
57 |
+
--pretrained_model_name_or_path <path/to/model> \
|
58 |
+
--pretrained_model_name_or_path_sd3_tryoff <path/to/tryoff/model> \
|
59 |
+
--example_image examples/example1.jpg \
|
60 |
+
--output_dir outputs \
|
61 |
+
--width 768 --height 1024 \
|
62 |
+
--guidance_scale 2.0 \
|
63 |
+
--num_inference_steps 28 \
|
64 |
+
--category upper_body
|
65 |
+
```
|
66 |
+
|
67 |
+
### 2. Visual Attribute Captioning
|
68 |
+
|
69 |
+
```bash
|
70 |
+
python precompute_utils/captioning_qwen.py \
|
71 |
+
--pretrained_model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
|
72 |
+
--image_path examples/example1.jpg \
|
73 |
+
--output_path outputs/example1_caption.txt \
|
74 |
+
--image_category upper_body
|
75 |
+
```
|
76 |
+
|
77 |
+
### 3. Clothing Segmentation
|
78 |
+
|
79 |
+
```python
|
80 |
+
from PIL import Image
|
81 |
+
from SegCloth import segment_clothing
|
82 |
+
|
83 |
+
img = Image.open("examples/example1.jpg")
|
84 |
+
binary_mask, fine_mask = segment_clothing(img, category="upper_body")
|
85 |
+
binary_mask.save("outputs/example1_binary_mask.jpg")
|
86 |
+
fine_mask.save("outputs/example1_fine_mask.jpg")
|
87 |
+
```
|
88 |
+
|
89 |
+
---
|
90 |
+
|
91 |
+
## Core Components
|
92 |
+
|
93 |
+
### 1. Inference Pipeline (`inference.py`)
|
94 |
+
|
95 |
+
- **Purpose**: Generates virtual try-on images using a Stable Diffusion 3-based pipeline.
|
96 |
+
- **How it works**:
|
97 |
+
- Loads pretrained models (VAE, transformers, schedulers, encoders).
|
98 |
+
- Segments the clothing region using `SegCloth.py`.
|
99 |
+
- Generates a descriptive caption for the garment using Qwen-VL (`captioning_qwen.py`).
|
100 |
+
- Runs the diffusion pipeline to synthesize a new try-on image.
|
101 |
+
- **Key Arguments**:
|
102 |
+
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for the main model.
|
103 |
+
- `--pretrained_model_name_or_path_sd3_tryoff`: Path or ID for the try-off transformer.
|
104 |
+
- `--example_image`: Input image path.
|
105 |
+
- `--output_dir`: Output directory.
|
106 |
+
- `--category`: Clothing category (`upper_body`, `lower_body`, `dresses`).
|
107 |
+
- `--width`, `--height`: Output image size.
|
108 |
+
- `--guidance_scale`, `--num_inference_steps`: Generation parameters.
|
109 |
+
|
110 |
+
### 2. Visual Attribute Captioning (`precompute_utils/captioning_qwen.py`)
|
111 |
+
|
112 |
+
- **Purpose**: Generates fine-grained, structured captions for fashion images using Qwen2.5-VL.
|
113 |
+
- **How it works**:
|
114 |
+
- Loads the Qwen2.5-VL model and processor.
|
115 |
+
- For a given image, predicts garment attributes (e.g., type, fit, hem, neckline) in a controlled, structured format.
|
116 |
+
- Can process single images or entire datasets (DressCode, VITON-HD).
|
117 |
+
- **Key Arguments**:
|
118 |
+
- `--pretrained_model_name_or_path`: Path or HuggingFace model ID for Qwen2.5-VL.
|
119 |
+
- `--image_path`: Path to a single image (for single-image captioning).
|
120 |
+
- `--output_path`: Where to save the generated caption.
|
121 |
+
- `--image_category`: Garment category (`upper_body`, `lower_body`, `dresses`).
|
122 |
+
- For batch/dataset mode: `--dataset_name`, `--dataset_root`, `--filename`.
|
123 |
+
|
124 |
+
### 3. Clothing Segmentation (`SegCloth.py`)
|
125 |
+
|
126 |
+
- **Purpose**: Segments clothing regions in images, producing:
|
127 |
+
- A binary mask (black & white) of the garment.
|
128 |
+
- A fine mask image where the garment is grayed out.
|
129 |
+
- **How it works**:
|
130 |
+
- Uses a SegFormer model (`mattmdjaga/segformer_b2_clothes`) via HuggingFace `transformers` pipeline.
|
131 |
+
- Supports categories: `upper_body`, `dresses`, `lower_body`.
|
132 |
+
- Provides both single-image and batch processing functions.
|
133 |
+
- **Usage**:
|
134 |
+
- `segment_clothing(img, category)`: Returns `(binary_mask, fine_mask)` for a PIL image.
|
135 |
+
- `batch_segment_clothing(img_dir, out_dir)`: Processes all images in a directory.
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
## Examples
|
140 |
+
|
141 |
+
See the `examples/` directory for sample images, masks and captions. Example usage scripts are provided for each core component.
|
142 |
+
Here is the workflow of this model and a comparison of its results with other models.
|
143 |
+
**Workflow
|
144 |
+
<img src="./assets/workflow.png" alt="Workflow" />
|
145 |
+
**Compair
|
146 |
+
<img src="./assets/compair.png" alt="compair" />
|
147 |
+
---
|
148 |
+
|
149 |
+
## Citation
|
150 |
+
|
151 |
+
If you use TEMU-VTOFF in your research or product, please cite this repository and the relevant models (e.g., Stable Diffusion 3, Qwen2.5-VL, SegFormer).
|
152 |
+
|
153 |
+
```
|
154 |
+
@misc{temu-vtoff,
|
155 |
+
author = {Your Name or Organization},
|
156 |
+
title = {TEMU-VTOFF: Virtual Try-On & Fashion Understanding Toolkit},
|
157 |
+
year = {2024},
|
158 |
+
howpublished = {\url{https://github.com/yourusername/TEMU-VTOFF}}
|
159 |
+
}
|
160 |
+
```
|
161 |
+
|
162 |
+
---
|
163 |
+
|
164 |
+
## License
|
165 |
+
|
166 |
+
This project is licensed under the [LICENSE](LICENSE) provided in the repository. Please check individual model and dataset licenses for additional terms.
|