File size: 35,133 Bytes
db276de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XU7NuMAA2drw",
"outputId": "b71fda33-9ca0-4d63-9f20-472db963db22"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NVIDIA A100-SXM4-40GB, 40960 MiB, 40536 MiB\n"
]
}
],
"source": [
"#@markdown Check type of GPU and VRAM available.\n",
"!nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9rIK1aqT1Cf0",
"outputId": "0769ad3a-6f27-4c7a-bf32-a1513bffef63"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BzM7j0ZSc_9c"
},
"source": [
"https://github.com/ShivamShrirao/diffusers/tree/main/examples/dreambooth"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wnTMyW41cC1E"
},
"source": [
"## Install Requirements"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "aLWXPZqjsZVV",
"outputId": "e97c0864-61b4-4d81-8f65-773e32aef9ac"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m190.3/190.3 KB\u001b[0m \u001b[31m17.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m18.7/18.7 MB\u001b[0m \u001b[31m79.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m144.0/144.0 KB\u001b[0m \u001b[31m15.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.3/6.3 MB\u001b[0m \u001b[31m103.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.1/53.1 KB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m76.3/76.3 MB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m14.2/14.2 MB\u001b[0m \u001b[31m76.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m118.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m55.8/55.8 KB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.5/71.5 KB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m140.6/140.6 KB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m107.0/107.0 KB\u001b[0m \u001b[31m14.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m84.5/84.5 KB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m91.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m56.9/56.9 KB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m50.5/50.5 KB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m64.3/64.3 KB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m80.6/80.6 KB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m69.6/69.6 KB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 KB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for python-multipart (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"!wget -q https://github.com/ShivamShrirao/diffusers/raw/main/examples/dreambooth/train_dreambooth.py\n",
"%pip install -qq git+https://github.com/ShivamShrirao/diffusers\n",
"%pip install -q -U --pre triton\n",
"%pip install -q accelerate==0.12.0 transformers ftfy bitsandbytes gradio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 327
},
"id": "y4lqqWT_uxD2",
"outputId": "8baacd05-301c-4bec-ff16-9fedabac3dd8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Login successful\n",
"Your token has been saved to /root/.huggingface/token\n"
]
}
],
"source": [
"#@title Login to HuggingFace π€\n",
"\n",
"#@markdown You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in π€ Hugging Face Hub, and you'll also need to use an access token for the code to work.\n",
"from huggingface_hub import notebook_login\n",
"!git config --global credential.helper store\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XfTlc8Mqb8iH"
},
"source": [
"### Install xformers from precompiled wheel."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "n6dcjPnnaiCn",
"outputId": "515ea33d-bca8-4d59-c04e-ab97382ea848"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting xformers\n",
" Cloning https://github.com/facebookresearch/xformers (to revision 1d31a3a) to /tmp/pip-install-7ejn07wq/xformers_3f27ca8ec2e5417990ad2bfde90dbaaa\n",
" Running command git clone --filter=blob:none --quiet https://github.com/facebookresearch/xformers /tmp/pip-install-7ejn07wq/xformers_3f27ca8ec2e5417990ad2bfde90dbaaa\n",
"\u001b[33m WARNING: Did not find branch or tag '1d31a3a', assuming revision or ref.\u001b[0m\u001b[33m\n",
"\u001b[0m Running command git checkout -q 1d31a3a\n",
" Resolved https://github.com/facebookresearch/xformers to commit 1d31a3a\n",
" Running command git submodule update --init --recursive -q\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: torch>=1.12 in /usr/local/lib/python3.8/dist-packages (from xformers) (1.13.1+cu116)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from xformers) (1.21.6)\n",
"Collecting pyre-extensions==0.0.23\n",
" Using cached pyre_extensions-0.0.23-py3-none-any.whl (11 kB)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from pyre-extensions==0.0.23->xformers) (4.4.0)\n",
"Collecting typing-inspect\n",
" Using cached typing_inspect-0.8.0-py3-none-any.whl (8.7 kB)\n",
"Collecting mypy-extensions>=0.3.0\n",
" Using cached mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n",
"Building wheels for collected packages: xformers\n",
" Building wheel for xformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for xformers: filename=xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl size=93158187 sha256=5151194336bd969942c59696c06bff6dbd0498d9315e192b6b773b97dadb6ebb\n",
" Stored in directory: /tmp/pip-ephem-wheel-cache-shg3tlmw/wheels/5f/3f/8d/a1f7db4c46304e4c83f3ce87dd959d5fcc266b04b9095a737c\n",
"Successfully built xformers\n",
"Installing collected packages: mypy-extensions, typing-inspect, pyre-extensions, xformers\n",
"Successfully installed mypy-extensions-1.0.0 pyre-extensions-0.0.23 typing-inspect-0.8.0 xformers-0.0.14.dev0\n"
]
}
],
"source": [
"#%pip install -q https://github.com/metrolobo/xformers_wheels/releases/download/1d31a3ac_various_6/xformers-0.0.14.dev0-cp37-cp37m-linux_x86_64.whl\n",
"# These were compiled on Tesla T4, should also work on P100, thanks to https://github.com/metrolobo\n",
"\n",
"# If precompiled wheels don't work, install it with the following command. It will take around 40 minutes to compile.\n",
"%pip install git+https://github.com/facebookresearch/xformers@1d31a3a#egg=xformers"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G0NV324ZcL9L"
},
"source": [
"## Settings and run"
]
},
{
"cell_type": "code",
"execution_count": 195,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Rxg0y5MBudmd",
"outputId": "eeb1e86d-bf2f-47e6-a4e0-82d26aeb0549"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n",
"[*] Weights will be saved at /content/drive/MyDrive/stable_diffusion_weights/aitop_roiyaruRIZ_style\n"
]
}
],
"source": [
"#@markdown Name/Path of the initial model.\n",
"MODEL_NAME = \"hakurei/waifu-diffusion\" #@param {type:\"string\"}\n",
"\n",
"#@markdown A general name for class like dog for dog images.\n",
"CLASS_NAME = \"roiyaruRIZ_style\" #@param {type:\"string\"}\n",
"\n",
"#@markdown Path for images of the concept for training.\n",
"INSTANCE_DIR = \"/content/data/aitop_\" #@param {type:\"string\"}\n",
"INSTANCE_DIR += CLASS_NAME\n",
"!mkdir -p $INSTANCE_DIR\n",
"CLASS_DIR = f\"/content/data/{CLASS_NAME}\"\n",
"\n",
"#@markdown If model weights should be saved directly in google drive (takes around 4-5 GB).\n",
"save_to_gdrive = True #@param {type:\"boolean\"}\n",
"if save_to_gdrive:\n",
" from google.colab import drive\n",
" drive.mount('/content/drive')\n",
"\n",
"#@markdown Enter the directory name to save model at.\n",
"\n",
"OUTPUT_DIR = \"stable_diffusion_weights/aitop_\" #@param {type:\"string\"}\n",
"OUTPUT_DIR += CLASS_NAME\n",
"if save_to_gdrive:\n",
" OUTPUT_DIR = \"/content/drive/MyDrive/\" + OUTPUT_DIR\n",
"else:\n",
" OUTPUT_DIR = \"/content/\" + OUTPUT_DIR\n",
"\n",
"print(f\"[*] Weights will be saved at {OUTPUT_DIR}\")\n",
"\n",
"!mkdir -p $OUTPUT_DIR\n",
"\n",
"#@markdown sks is a rare identifier, feel free to replace it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fe-GgtnUVO_e"
},
"outputs": [],
"source": [
"#@markdown Upload your images by running this cell.\n",
"\n",
"#@markdown OR\n",
"\n",
"#@markdown You can use the file manager on the left panel to upload (drag and drop) to INSTANCE_DIR (it uploads faster)\n",
"\n",
"import os\n",
"from google.colab import files\n",
"import shutil\n",
"\n",
"uploaded = files.upload()\n",
"for filename in uploaded.keys():\n",
" dst_path = os.path.join(INSTANCE_DIR, filename)\n",
" shutil.move(filename, dst_path)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qn5ILIyDJIcX"
},
"source": [
"# Start Training\n",
"\n",
"Use the table below to choose the best flags based on your memory and speed requirements. Tested on Tesla T4 GPU.\n",
"\n",
"\n",
"| `fp16` | `train_batch_size` | `gradient_accumulation_steps` | `gradient_checkpointing` | `use_8bit_adam` | GB VRAM usage | Speed (it/s) |\n",
"| ---- | ------------------ | ----------------------------- | ----------------------- | --------------- | ---------- | ------------ |\n",
"| fp16 | 1 | 1 | TRUE | TRUE | 9.92 | 0.93 |\n",
"| no | 1 | 1 | TRUE | TRUE | 10.08 | 0.42 |\n",
"| fp16 | 2 | 1 | TRUE | TRUE | 10.4 | 0.66 |\n",
"| fp16 | 1 | 1 | FALSE | TRUE | 11.17 | 1.14 |\n",
"| no | 1 | 1 | FALSE | TRUE | 11.17 | 0.49 |\n",
"| fp16 | 1 | 2 | TRUE | TRUE | 11.56 | 1 |\n",
"| fp16 | 2 | 1 | FALSE | TRUE | 13.67 | 0.82 |\n",
"| fp16 | 1 | 2 | FALSE | TRUE | 13.7 | 0.83 |\n",
"| fp16 | 1 | 1 | TRUE | FALSE | 15.79 | 0.77 |\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-ioxxvHoicPs"
},
"source": [
"Add `--gradient_checkpointing` flag for around 9.92 GB VRAM usage.\n",
"\n",
"remove `--use_8bit_adam` flag for full precision. Requires 15.79 GB with `--gradient_checkpointing` else 17.8 GB."
]
},
{
"cell_type": "code",
"execution_count": 196,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jjcSXTp-u-Eg",
"outputId": "4bdae706-74ed-4a40-f821-ce3f765ce87a"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The following values were not passed to `accelerate launch` and had defaults used instead:\n",
"\t`--num_processes` was set to a value of `1`\n",
"\t`--num_machines` was set to a value of `1`\n",
"\t`--mixed_precision` was set to a value of `'no'`\n",
"\t`--num_cpu_threads_per_process` was set to `6` to improve out-of-box performance\n",
"To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`.\n",
"Fetching 15 files: 100% 15/15 [00:00<00:00, 171897.70it/s]\n",
"You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .\n",
"Generating class images: 100% 13/13 [00:38<00:00, 2.95s/it]\n",
"Caching latents: 100% 50/50 [00:05<00:00, 9.18it/s]\n",
"Steps: 100% 1000/1000 [05:56<00:00, 2.84it/s, loss=0.351, lr=5e-6]\n",
"Fetching 15 files: 100% 15/15 [00:00<00:00, 33447.40it/s]\n",
"You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .\n",
"[*] Weights saved at /content/drive/MyDrive/stable_diffusion_weights/aitop_roiyaruRIZ_style/1000\n",
"Steps: 100% 1000/1000 [06:21<00:00, 2.62it/s, loss=0.351, lr=5e-6]\n"
]
}
],
"source": [
"!accelerate launch train_dreambooth.py \\\n",
" --pretrained_model_name_or_path=$MODEL_NAME \\\n",
" --instance_data_dir=$INSTANCE_DIR \\\n",
" --class_data_dir=$CLASS_DIR \\\n",
" --output_dir=$OUTPUT_DIR \\\n",
" --with_prior_preservation --prior_loss_weight=1.0 \\\n",
" --instance_prompt=\"aitop {CLASS_NAME}\" \\\n",
" --class_prompt=\"{CLASS_NAME}\" \\\n",
" --seed=1337 \\\n",
" --resolution=512 \\\n",
" --train_batch_size=1 \\\n",
" --mixed_precision=\"fp16\" \\\n",
" --gradient_accumulation_steps=1 \\\n",
" --gradient_checkpointing \\\n",
" --learning_rate=5e-6 \\\n",
" --lr_scheduler=\"constant\" \\\n",
" --lr_warmup_steps=0 \\\n",
" --num_class_images=50 \\\n",
" --sample_batch_size=4 \\\n",
" --max_train_steps=1000\n",
" #--use_8bit_adam \\\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5V8wgU0HN-Kq"
},
"source": [
"## Convert weights to ckpt to use in web UIs like AUTOMATIC1111."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "baL22PHzOLeP",
"outputId": "7969edd9-51f6-4f35-ba16-8e04700c132d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting safetensors\n",
" Downloading safetensors-0.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m63.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hInstalling collected packages: safetensors\n",
"Successfully installed safetensors-0.2.8\n"
]
}
],
"source": [
"#@markdown Download script\n",
"!wget -q https://github.com/ShivamShrirao/diffusers/raw/main/scripts/convert_diffusers_to_original_stable_diffusion.py\n",
"!pip install safetensors"
]
},
{
"cell_type": "code",
"execution_count": 197,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "89Az5NUxOWdy",
"outputId": "e97e902b-d673-47de-c7fb-99dad404a8ca"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Reshaping encoder.mid.attn_1.q.weight for SD format\n",
"Reshaping encoder.mid.attn_1.k.weight for SD format\n",
"Reshaping encoder.mid.attn_1.v.weight for SD format\n",
"Reshaping encoder.mid.attn_1.proj_out.weight for SD format\n",
"Reshaping decoder.mid.attn_1.q.weight for SD format\n",
"Reshaping decoder.mid.attn_1.k.weight for SD format\n",
"Reshaping decoder.mid.attn_1.v.weight for SD format\n",
"Reshaping decoder.mid.attn_1.proj_out.weight for SD format\n",
"[*] Converted ckpt saved at /content/drive/MyDrive/stable_diffusion_weights/aitop_roiyaruRIZ_style/1000/phantom_roiyaruRIZ_style_Diffusion.ckpt\n"
]
}
],
"source": [
"#@markdown Run conversion.\n",
"ckpt_path = OUTPUT_DIR + f\"/1000/phantom_{CLASS_NAME}_Diffusion.ckpt\"\n",
"output_dir_with_steps = OUTPUT_DIR + \"/1000\"\n",
"\n",
"half_arg = \"\"\n",
"#@markdown Whether to convert to fp16, takes half the space (2GB), might loose some quality.\n",
"fp16 = False #@param {type: \"boolean\"}\n",
"if fp16:\n",
" half_arg = \"--half\"\n",
"!python convert_diffusers_to_original_stable_diffusion.py --model_path $output_dir_with_steps --checkpoint_path $ckpt_path $half_arg\n",
"print(f\"[*] Converted ckpt saved at {ckpt_path}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ToNG4fd_dTbF"
},
"source": [
"## Inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NA8IECI8InNr"
},
"outputs": [],
"source": [
"import torch\n",
"from torch import autocast\n",
"from diffusers import StableDiffusionPipeline\n",
"from IPython.display import display"
]
},
{
"cell_type": "code",
"execution_count": 199,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gW15FjffdTID",
"outputId": "92a545d0-f9b6-4b33-d6de-1b0e3e0d00b8"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .\n"
]
}
],
"source": [
"model_path = output_dir_with_steps # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive\n",
"\n",
"pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16).to(\"cuda\")\n",
"g_cuda = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "oIzkltjpVO_f",
"outputId": "1db9fcaa-2d0f-4966-dc4f-baac60cdb807"
},
"outputs": [
{
"data": {
"text/plain": [
"<torch._C.Generator at 0x7f81b9035570>"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#@markdown Can set random seed here for reproducibility.\n",
"g_cuda = torch.Generator(device='cuda')\n",
"seed = 52362 #@param {type:\"number\"}\n",
"g_cuda.manual_seed(seed)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 240
},
"id": "K6xoHWSsbcS3",
"outputId": "7bbe13a0-0e31-48a3-cf94-f7200c02ceb7"
},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-1-c0940be36692>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mwidth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m512\u001b[0m \u001b[0;31m#@param {type:\"number\"}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mautocast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cuda\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minference_mode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m images = pipe(\n\u001b[1;32m 13\u001b[0m \u001b[0mprompt\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'autocast' is not defined"
]
}
],
"source": [
"#@title Run for generating images.\n",
"\n",
"prompt = \"masterpiece, best quality, 1girl, aitop roiyaruRIZ_style\" #@param {type:\"string\"}\n",
"negative_prompt = \"nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background\" #@param {type:\"string\"}\n",
"num_samples = 4 #@param {type:\"number\"}\n",
"guidance_scale = 11 #@param {type:\"number\"}\n",
"num_inference_steps = 50 #@param {type:\"number\"}\n",
"height = 512 #@param {type:\"number\"}\n",
"width = 512 #@param {type:\"number\"}\n",
"\n",
"with autocast(\"cuda\"), torch.inference_mode():\n",
" images = pipe(\n",
" prompt,\n",
" height=height,\n",
" width=width,\n",
" negative_prompt=negative_prompt,\n",
" num_images_per_prompt=num_samples,\n",
" num_inference_steps=num_inference_steps,\n",
" guidance_scale=guidance_scale,\n",
" generator=g_cuda\n",
" ).images\n",
"\n",
"for img in images:\n",
" display(img)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "WMCqQ5Tcdsm2"
},
"outputs": [],
"source": [
"#@markdown Run Gradio UI for generating images.\n",
"import gradio as gr\n",
"\n",
"def inference(prompt, negative_prompt, num_samples, height=512, width=512, num_inference_steps=50, guidance_scale=7.5):\n",
" with torch.autocast(\"cuda\"), torch.inference_mode():\n",
" return pipe(\n",
" prompt, height=int(height), width=int(width),\n",
" negative_prompt=negative_prompt,\n",
" num_images_per_prompt=int(num_samples),\n",
" num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale,\n",
" generator=g_cuda\n",
" ).images\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Column():\n",
" prompt = gr.Textbox(label=\"Prompt\", value=\"photo of sks guy, digital painting\")\n",
" negative_prompt = gr.Textbox(label=\"Negative Prompt\", value=\"\")\n",
" run = gr.Button(value=\"Generate\")\n",
" with gr.Row():\n",
" num_samples = gr.Number(label=\"Number of Samples\", value=4)\n",
" guidance_scale = gr.Number(label=\"Guidance Scale\", value=7.5)\n",
" with gr.Row():\n",
" height = gr.Number(label=\"Height\", value=512)\n",
" width = gr.Number(label=\"Width\", value=512)\n",
" num_inference_steps = gr.Slider(label=\"Steps\", value=50)\n",
" with gr.Column():\n",
" gallery = gr.Gallery()\n",
"\n",
" run.click(inference, inputs=[prompt, negative_prompt, num_samples, height, width, num_inference_steps, guidance_scale], outputs=gallery)\n",
"\n",
"demo.launch(debug=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lJoOgLQHnC8L"
},
"outputs": [],
"source": [
"#@title (Optional) Delete diffuser weights and only keep the ckpt to free up drive space (4GB).\n",
"\n",
"#@markdown [ ! ] Caution, Only execute if you are sure u want to delete the diffuser format weights and only use the ckpt.\n",
"import shutil\n",
"from glob import glob\n",
"for f in glob(OUTPUT_DIR+\"/*\"):\n",
" if not f.endswith(\".ckpt\"):\n",
" try:\n",
" shutil.rmtree(f)\n",
" except NotADirectoryError:\n",
" continue\n",
" print(\"Deleted\", f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jXgi8HM4c-DA"
},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": []
},
"gpuClass": "premium",
"kernelspec": {
"display_name": "Python 3.10.7 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.7"
},
"vscode": {
"interpreter": {
"hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
} |